Szasz Type Operators Involving Charlier Polynomials and Approximation Properties

被引:20
作者
Al-Abied, A. A. H. [1 ]
Mursaleen, M. Ayman [2 ,3 ]
Mursaleen, M. [4 ]
机构
[1] Dhamar Univ, Dept Math, Dhamar, Yemen
[2] Univ Newcastle, Sch Informat & Phys Sci, Callaghan, NSW 2308, Australia
[3] Univ Putra Malaysia, Fac Sci, Dept Math & Stat, Serdang 43400, Selangor, Malaysia
[4] China Med Univ Taiwan, China Med Univ Hosp, Dept Med Res, Taichung, Taiwan
关键词
Szasz operators; Charlier polynomials; Modulus of continuity; rate of convergence; Voronoskaja type theorem; VARIANT;
D O I
10.2298/FIL2115149A
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Our aim is to define modified Szasz type operators involving Charlier polynomials and obtain some approximation properties. We prove some results on the order of convergence by using the modulus of smoothness and Peetre's K-functional. We also establish Voronoskaja type theorem for these operators. Moreover, we prove a Korovkin type approximation theorem via q-statistical convergence.
引用
收藏
页码:5149 / 5159
页数:11
相关论文
共 50 条
[21]   APPROXIMATION BY CHLODOWSKY VARIANT OF SZASZ OPERATORS INVOLVING SHEFFER POLYNOMIALS [J].
Ansari, Khursheed J. ;
Mursaleen, M. ;
Al-Abeid, A. H. .
ADVANCES IN OPERATOR THEORY, 2019, 4 (02) :321-341
[22]   The approximation of bivariate Chlodowsky-Szasz-Kantorovich-Charlier-type operators [J].
Agrawal, Purshottam Narain ;
Baxhaku, Behar ;
Chauhan, Ruchi .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2017,
[23]   Convergence Rate of Szasz Operators Involving Boas-Buck-Type Polynomials [J].
Yilik, Ozlem Oksuzer ;
Garg, Tarul ;
Agrawal, P. N. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES INDIA SECTION A-PHYSICAL SCIENCES, 2022, 92 (01) :13-22
[24]   Approximation by Generalized Integral Favard-Szasz Type Operators Involving Sheffer Polynomials [J].
Karateke, Seda ;
Atakut, Cigdem ;
Buyukyazici, Ibrahim .
FILOMAT, 2019, 33 (07) :1921-1935
[25]   Generalization of Szasz operators involving multiple Sheffer polynomials [J].
Ali, Mahvish ;
Paris, Richard B. .
JOURNAL OF ANALYSIS, 2023, 31 (01) :1-19
[26]   Generalized Szasz-Mirakyan operators involving Brenke type polynomials [J].
Khatri, Kejal ;
Mishra, Vishnu Narayan .
APPLIED MATHEMATICS AND COMPUTATION, 2018, 324 :228-238
[27]   Chlodowsky type generalization of (p,q)-Szasz operators involving Brenke type polynomials [J].
Kadak, Ugur ;
Mishra, Vishnu Narayan ;
Pandey, Shikha .
REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2018, 112 (04) :1443-1462
[28]   Approximation by generalized Stancu type integral operators involving Sheffer polynomials [J].
Mursaleen, M. ;
Rahman, Shagufta ;
Ansari, Khursheed J. .
CARPATHIAN JOURNAL OF MATHEMATICS, 2018, 34 (02) :215-228
[29]   Bezier Variant of the Szasz-Durrmeyer Type Operators Based on the Poisson-Charlier Polynomials [J].
Kajla, Arun ;
Miclaus, Dan .
FILOMAT, 2020, 34 (10) :3265-3273
[30]   Approximation by Kantorovich-Szasz Type Operators Based on Brenke Type Polynomials [J].
Atakut, Cigdem ;
Buyukyazici, Ibrahim .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2016, 37 (12) :1488-1502