Fourth order q-difference equation for the first associated of the q-classical orthogonal polynomials

被引:13
作者
Foupouagnigni, M
Ronveaux, A
Koepf, W
机构
[1] Inst Math & Sci Phys, Porto Novo, Benin
[2] Fachbereich IMN, HTWK Leipzig, D-04251 Leipzig, Germany
[3] Fac Univ Notre Dame Paix, B-5000 Namur, Belgium
关键词
q-orthogonal polynomials; fourth-order q-difference equation;
D O I
10.1016/S0377-0427(98)00225-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We derive the fourth-order q-difference equation satisfied by the first associated of the q-classical orthogonal polynomials. The coefficients of this equation are given in terms of the polynomials sigma and tau which appear in the q-Pearson difference equation D-q(sigma rho) = tau rho defining the weight rho of the q-classical orthogonal polynomials inside the q-Hahn tableau. (C) 1999 Elsevier Science B.V. All rights reserved. 1991 MSC:33C25.
引用
收藏
页码:231 / 236
页数:6
相关论文
共 15 条
[1]  
[Anonymous], 1991, MAPLE 5 LANGUAGE REF
[2]  
AREA I, 1999, IN PRESS J SYMB COMP
[3]  
ATAKISHIYEV NM, 1996, ZT TEORET MAT FIZ, V106, P76
[4]  
Chihara TS., 1978, INTRO ORTHOGONAL POL
[5]   Fourth-order difference equation for the associated classical discrete orthogonal polynomials [J].
Foupouagnigni, M ;
Koepf, W ;
Ronveaux, A .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1998, 92 (02) :103-108
[6]  
FOUPOUAGNIGNI M, UNPUB 4 ORDER DIFFER
[7]  
GASPER G, 1990, ENCY MATH ITS APPL, V35
[8]  
Hahn W., 1949, MATH NACHR, V2, P4, DOI 10.1002/mana.19490020103
[9]  
KOEKOEK R, 1996, 9405 TU DELFT FAC TE
[10]   Results on the associated classical orthogonal polynomials [J].
Lewanowicz, S .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1995, 65 (1-3) :215-231