Mitochondria-derived ROS activate AMP-activated protein kinase (AMPK) indirectly

被引:234
作者
Hinchy, Elizabeth C. [1 ]
Gruszczyk, Anja V. [1 ,2 ,3 ]
Willows, Robin [4 ]
Navaratnam, Naveenan [4 ]
Hall, Andrew R. [1 ]
Bates, Georgina [1 ]
Bright, Thomas P. [1 ]
Krieg, Thomas [5 ]
Carling, David [4 ]
Murphy, Michael P. [1 ]
机构
[1] Univ Cambridge, MRC Mitochondrial Biol Unit, Wellcome Trust MRC Bldg,Cambridge Biomed Campus, Cambridge CB2 0XY, England
[2] Addenbrookes Hosp, Univ Dept Surg, Cambridge CB2 0QQ, England
[3] Addenbrookes Hosp, Cambridge NIHR Biomed Res Ctr, Cambridge CB2 0QQ, England
[4] Imperial Coll, Hammersmith Hosp, MRC London Inst Med Sci, London W12 0NN, England
[5] Univ Cambridge, Addenbrookes Hosp, Dept Med, Hills Rd, Cambridge CB2 0QQ, England
基金
英国惠康基金; 英国医学研究理事会;
关键词
AMP-activated kinase (AMPK); reactive oxygen species (ROS); mitochondria; hydrogen peroxide; redox signaling; HYDROGEN-PEROXIDE; ENERGY SENSOR; MECHANISMS; PEROXIREDOXIN; CELLS; MUSCLE;
D O I
10.1074/jbc.RA118.002579
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Mitochondrial reactive oxygen species (ROS) production is a tightly regulated redox signal that transmits information from the organelle to the cell. Other mitochondrial signals, such as ATP, are sensed by enzymes, including the key metabolic sensor and regulator, AMP-activated protein kinase (AMPK). AMPK responds to the cellular ATP/AMP and ATP/ADP ratios by matching mitochondrial ATP production to demand. Previous reports proposed that AMPK activity also responds to ROS, by ROS acting on redox-sensitive cysteine residues (Cys-299/Cys-304) on the AMPK subunit. This suggests an appealing model in which mitochondria fine-tune AMPK activity by both adenine nucleotide-dependent mechanisms and by redox signals. Here we assessed whether physiological levels of ROS directly alter AMPK activity. To this end we added exogenous hydrogen peroxide (H2O2) to cells and utilized the mitochondria-targeted redox cycler MitoParaquat to generate ROS within mitochondria without disrupting oxidative phosphorylation. Mitochondrial and cytosolic thiol oxidation was assessed by measuring peroxiredoxin dimerization and by redox-sensitive fluorescent proteins. Replacing the putative redox-active cysteine residues on AMPK 1 with alanines did not alter the response of AMPK to H2O2. In parallel with measurements of AMPK activity, we measured the cell ATP/ADP ratio. This allowed us to separate the effects on AMPK activity due to ROS production from those caused by changes in this ratio. We conclude that AMPK activity in response to redox changes is not due to direct action on AMPK itself, but is a secondary consequence of redox effects on other processes, such as mitochondrial ATP production.
引用
收藏
页码:17208 / 17217
页数:10
相关论文
共 43 条
[1]   In Vivo Mapping of Hydrogen Peroxide and Oxidized Glutathione Reveals Chemical and Regional Specificity of Redox Homeostasis [J].
Albrecht, Simone C. ;
Barata, Ana Gomes ;
Grosshans, Joerg ;
Teleman, Aurelio A. ;
Dick, Tobias P. .
CELL METABOLISM, 2011, 14 (06) :819-829
[2]   Oxidative stress activates AMPK in cultured cells primarily by increasing cellular AMP and/or ADP [J].
Auciello, F. Romana ;
Ross, Fiona A. ;
Ikematsu, Naoko ;
Hardie, D. Grahame .
FEBS LETTERS, 2014, 588 (18) :3361-3366
[3]   Reactive oxygen species induce virus-independent MAVS oligomerization in systemic lupus erythematosus [J].
Buskiewicz, Iwona A. ;
Montgomery, Theresa ;
Yasewicz, Elizabeth C. ;
Huber, Sally A. ;
Murphy, Michael P. ;
Hartley, Richard C. ;
Kelly, Ryan ;
Crow, Mary K. ;
Perl, Andras ;
Budd, Ralph C. ;
Koenig, Andreas .
Science Signaling, 2016, 9 (456)
[4]  
Carling D, 2011, NAT CHEM BIOL, V7, P512, DOI [10.1038/NCHEMBIO.610, 10.1038/nchembio.610]
[5]   A Unifying Mechanism for Mitochondrial Superoxide Production during Ischemia-Reperfusion Injury [J].
Chouchani, Edward T. ;
Pell, Victoria R. ;
James, Andrew M. ;
Work, Lorraine M. ;
Saeb-Parsy, Kourosh ;
Frezza, Christian ;
Krieg, Thomas ;
Murphy, Michael P. .
CELL METABOLISM, 2016, 23 (02) :254-263
[6]   Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS [J].
Chouchani, Edward T. ;
Pell, Victoria R. ;
Gaude, Edoardo ;
Aksentijevic, Dunja ;
Sundier, Stephanie Y. ;
Robb, Ellen L. ;
Logan, Angela ;
Nadtochiy, Sergiy M. ;
Ord, Emily N. J. ;
Smith, Anthony C. ;
Eyassu, Filmon ;
Shirley, Rachel ;
Hu, Chou-Hui ;
Dare, Anna J. ;
James, Andrew M. ;
Rogatti, Sebastian ;
Hartley, Richard C. ;
Eaton, Simon ;
Costa, Ana S. H. ;
Brookes, Paul S. ;
Davidson, Sean M. ;
Duchen, Michael R. ;
Saeb-Parsy, Kourosh ;
Shattock, Michael J. ;
Robinson, Alan J. ;
Work, Lorraine M. ;
Frezza, Christian ;
Krieg, Thomas ;
Murphy, Michael P. .
NATURE, 2014, 515 (7527) :431-+
[7]   Mitochondrial redox signalling at a glance [J].
Collins, Yvonne ;
Chouchani, Edward T. ;
James, Andrew M. ;
Menger, Katja E. ;
Cocheme, Helena M. ;
Murphy, Michael P. .
JOURNAL OF CELL SCIENCE, 2012, 125 (04) :801-806
[8]   Inactivation of a Peroxiredoxin by Hydrogen Peroxide Is Critical for Thioredoxin-Mediated Repair of Oxidized Proteins and Cell Survival [J].
Day, Alison M. ;
Brown, Jonathon D. ;
Taylor, Sarah R. ;
Rand, Jonathan D. ;
Morgan, Brian A. ;
Veal, Elizabeth A. .
MOLECULAR CELL, 2012, 45 (03) :398-408
[9]   The function of the chloroplast 2-cysteine peroxiredoxin in peroxide detoxification and its regulation [J].
Dietz, KJ ;
Horling, F ;
König, J ;
Baier, M .
JOURNAL OF EXPERIMENTAL BOTANY, 2002, 53 (372) :1321-1329
[10]   Hypoxic activation of AMPK is dependent on mitochondrial ROS but independent of an increase in AMP/ATP ratio [J].
Emerling, Brooke M. ;
Weinberg, Frank ;
Snyder, Colleen ;
Burgess, Zach ;
Mutlu, Goekhan M. ;
Viollet, Benoit ;
Budinger, G. R. Scott ;
Chandel, Navdeep S. .
FREE RADICAL BIOLOGY AND MEDICINE, 2009, 46 (10) :1386-1391