Effective Critical Electric Field for Runaway-Electron Generation

被引:66
作者
Stahl, A. [1 ]
Hirvijoki, E. [1 ]
Decker, J. [1 ,2 ]
Embreus, O. [1 ]
Fulop, T. [1 ]
机构
[1] Chalmers, Dept Appl Phys, SE-41296 Gothenburg, Sweden
[2] Ecole Polytech Fed Lausanne, CRPP, CH-1015 Lausanne, Switzerland
关键词
ACCELERATION; AVALANCHE; TOKAMAKS;
D O I
10.1103/PhysRevLett.114.115002
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this Letter we investigate factors that influence the effective critical electric field for runaway-electron generation in plasmas. We present numerical solutions of the kinetic equation and discuss the implications for the threshold electric field. We show that the effective electric field necessary for significant runaway-electron formation often is higher than previously calculated due to both (1) extremely strong dependence of primary generation on temperature and (2) synchrotron radiation losses. We also address the effective critical field in the context of a transition from runaway growth to decay. We find agreement with recent experiments, but show that the observation of an elevated effective critical field can mainly be attributed to changes in the momentum-space distribution of runaways, and only to a lesser extent to a de facto change in the critical field.
引用
收藏
页数:5
相关论文
共 21 条
[11]   COLLISIONAL AVALANCHE EXPONENTIATION OF RUNAWAY ELECTRONS IN ELECTRIFIED PLASMAS [J].
JAYAKUMAR, R ;
FLEISCHMANN, HH ;
ZWEBEN, SJ .
PHYSICS LETTERS A, 1993, 172 (06) :447-451
[12]   Electromagnetic waves destabilized by runaway electrons in near-critical electric fields [J].
Komar, A. ;
Pokol, G. I. ;
Fulop, T. .
PHYSICS OF PLASMAS, 2013, 20 (01)
[13]   Numerical calculation of the runaway electron distribution function and associated synchrotron emission [J].
Landreman, Matt ;
Stahl, Adam ;
Fulop, Tunde .
COMPUTER PHYSICS COMMUNICATIONS, 2014, 185 (03) :847-855
[14]   Experimental Observation of Increased Threshold Electric Field for Runaway Generation due to Synchrotron Radiation Losses in the FTU Tokamak [J].
Martin-Solis, J. R. ;
Sanchez, R. ;
Esposito, B. .
PHYSICAL REVIEW LETTERS, 2010, 105 (18)
[15]   Momentum-space structure of relativistic runaway electrons [J].
Martin-Solis, JR ;
Alvarez, JD ;
Sanchez, R ;
Esposito, B .
PHYSICS OF PLASMAS, 1998, 5 (06) :2370-2377
[16]   Runaway electron drift orbits in magnetostatic perturbed fields [J].
Papp, G. ;
Drevlak, M. ;
Fulop, T. ;
Helander, P. .
NUCLEAR FUSION, 2011, 51 (04)
[17]  
PAULI W, 1981, THEORY RELATIVITY
[18]   Growth and decay of runaway electrons above the critical electric field under quiescent conditions [J].
Paz-Soldan, C. ;
Eidietis, N. W. ;
Granetz, R. ;
Hollmann, E. M. ;
Moyer, R. A. ;
Wesley, J. C. ;
Zhang, J. ;
Austin, M. E. ;
Crocker, N. A. ;
Wingen, A. ;
Zhu, Y. .
PHYSICS OF PLASMAS, 2014, 21 (02)
[19]   Quasi-linear analysis of whistler waves driven by relativistic runaway beams in tokamaks [J].
Pokol, G. ;
Fulop, T. ;
Lisak, M. .
PLASMA PHYSICS AND CONTROLLED FUSION, 2008, 50 (04)
[20]   Theory for avalanche of runaway electrons in tokamaks [J].
Rosenbluth, MN ;
Putvinski, SV .
NUCLEAR FUSION, 1997, 37 (10) :1355-1362