Comparison of strategies for multi-step ahead photovoltaic power forecasting models based on hybrid group method of data handling networks and least square support vector machine

被引:94
作者
De Giorgi, M. G. [1 ]
Malvoni, M. [1 ]
Congedo, P. M. [1 ]
机构
[1] Univ Salento, Dipartimento Ingn Innovaz, Via Monteroni, I-73100 Lecce, Italy
关键词
Photovoltaic power forecast; LS-SVM (Least square support vector machine); GMDH (Group method of data handling); Multi-step ahead forecast; Forecasting errors; GLSSVM (Group Least Square Support Vector Machine); GLOBAL SOLAR IRRADIATION; FUZZY-LOGIC; RADIATION; GMDH; ELECTRICITY;
D O I
10.1016/j.energy.2016.04.020
中图分类号
O414.1 [热力学];
学科分类号
摘要
The forecasting techniques are affected by the renewable sources randomness. Improvements of the prediction models with more accurate results and lower error are necessary for future development of the microgrids projects and of the economic dispatch sector. The LS-SVM (Least Square Support Vector Machine), a relatively unexplored neural network known as GMDH (Group Method of Data Handling) and a novel hybrid algorithm GLSSVM (Group Least Square Support Vector Machine), based on the combination of the first two models, were implemented to forecast the PV (Photovoltaic) output power at several time horizons up to 24 h. In order to improve the forecasting accuracy, each model was combined with three strategies for multi-step ahead forecast (Direct, Recursive and DirRec). A detail analysis of the normalized mean error is carried out to compare the different forecasting methods, using the historical PV output power data of a 960 kWp grid connected PV system in the south of Italy. The outcomes demonstrate the GLSSVM method with the DirRec strategy can give a normalized error of 2.92% under different weather conditions with evident improvements respect to the traditional ANN (Artificial Neural Network). (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:360 / 373
页数:14
相关论文
共 56 条
[1]   Modeling and forecasting the mean hourly wind speed time series using GMDH-based abductive networks [J].
Abdel-Aal, R. E. ;
Elhadidy, M. A. ;
Shaahid, S. M. .
RENEWABLE ENERGY, 2009, 34 (07) :1686-1699
[2]   Solar energy prediction using linear and non-linear regularization models: A study on AMS (American Meteorological Society) 2013-14 Solar Energy Prediction Contest [J].
Aggarwal, S. K. ;
Saini, L. M. .
ENERGY, 2014, 78 :247-256
[3]   A review on applications of ANN and SVM for building electrical energy consumption forecasting [J].
Ahmad, A. S. ;
Hassan, M. Y. ;
Abdullah, M. P. ;
Rahman, H. A. ;
Hussin, F. ;
Abdullah, H. ;
Saidur, R. .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2014, 33 :102-109
[4]   Calculation of the energy provided by a PV generator. Comparative study: Conventional methods vs. artificial neural networks [J].
Almonacid, F. ;
Rus, C. ;
Perez-Higueras, P. ;
Hontoria, L. .
ENERGY, 2011, 36 (01) :375-384
[5]  
BAKER S., 1997, POLITICS SUSTAINABLE
[6]   Models for the estimation of diffuse solar radiation for typical cities in Turkey [J].
Bakirci, Kadir .
ENERGY, 2015, 82 :827-838
[7]   A review and comparison of strategies for multi-step ahead time series forecasting based on the NN5 forecasting competition [J].
Ben Taieb, Souhaib ;
Bontempi, Gianluca ;
Atiya, Amir F. ;
Sorjamaa, Antti .
EXPERT SYSTEMS WITH APPLICATIONS, 2012, 39 (08) :7067-7083
[8]   Enhanced policies for the improvement of electricity efficiencies [J].
Blok, K .
ENERGY POLICY, 2005, 33 (13) :1635-1641
[9]   Assessing the potential of support vector machine for estimating daily solar radiation using sunshine duration [J].
Chen, Ji-Long ;
Li, Guo-Sheng ;
Wu, Sheng-Jun .
ENERGY CONVERSION AND MANAGEMENT, 2013, 75 :311-318
[10]   Estimation of monthly solar radiation from measured temperatures using support vector machines - A case study [J].
Chen, Ji-Long ;
Liu, Hong-Bin ;
Wu, Wei ;
Xie, De-Ti .
RENEWABLE ENERGY, 2011, 36 (01) :413-420