THE RIEMANN PROBLEM FOR KERR EQUATIONS AND NON-UNIQUENESS OF SELFSIMILAR ENTROPY SOLUTIONS

被引:0
作者
Aregba-Driollet, Denise [1 ]
机构
[1] Univ Bordeaux, Inst Math Bordeaux, UMR 5251, IPB, 351 Cours Liberat, F-33405 Talence, France
来源
HYPERBOLIC PROBLEMS: THEORY, NUMERICS, APPLICATIONS | 2014年 / 8卷
关键词
Systems of conservation laws; Riemann problem; Lax entropy solutions; Liu's criteria; nonlinear Maxwell's equations; CONSERVATION-LAWS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We solve the Riemann problem for a nonlinear full wave Maxwell system arising in nonlinear optics. This system is hyperbolic, some eigenvalues have non-constant multiplicity and are neither genuinely nonlinear, nor linearly degenerate. In a particular 2x2 reduced case, we are able to exhibit two distinct selfsimilar entropy solutions. We compute the amounts of entropy dissipation and compare them.
引用
收藏
页码:269 / 276
页数:8
相关论文
共 13 条