Centrifugal Force Regularized Laponite@Graphene Hybrid Membranes with Ordered Interlayer Mass Transfer Channels and High Structural Stability for High-Rate Supercapacitors

被引:11
作者
Peng, Xianqiang [1 ]
Zhang, Tingting [1 ]
Zheng, Jie [1 ]
Lv, Xingbin [1 ]
Zhang, Hualian [1 ]
Hu, Jia-Qi [2 ]
Tian, Wen [1 ]
Tan, Shuai [1 ]
Ji, Junyi [1 ,3 ]
机构
[1] Sichuan Univ, Sch Chem Engn, Chengdu 610065, Peoples R China
[2] Jiangxi Agr Univ, Coll Sci, Nanchang 330045, Jiangxi, Peoples R China
[3] Sichuan Univ, State Key Lab Polymer Mat Engn, Chengdu 610065, Peoples R China
基金
中国国家自然科学基金;
关键词
OXIDE MEMBRANES; PERFORMANCE; FABRICATION; RGO; GO;
D O I
10.1021/acs.iecr.1c03877
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Development of graphene-based membrane electrodes with high electron and charge transfer capability can meet the increasing requirement for high-rate energy storage devices. Herein, we demonstrate a novel spin regularization strategy to prepare regularized graphene oxide (GO) membranes with uniform interlayer spacing for high-performance electrodes. The outer stretching forces on the radial direction together with the inner electrostatic interaction can form smoother GO flakes and 2D interlayer channels. The positively/negatively charged laponites embedded between the interlayer or at the edges of the GO flakes can enhance the stability of the channel structure, thus further promoting the mass transfer efficiency. Moreover, the membranes with ordered and stable laminar structures reveal high mechanical strength and water stability. Therefore, the as-prepared 2L@GO-10 membrane with regular interlayer channels exhibits a high gravimetric capacitance (406.5 F g(-1) at 0.5 A g(-1)) and rate capability (53% capacitance retention from 0.5 to 100 A g(-1)) as well as robust cyclic stability (95% retention after 20,000 cycles). Additionally, the multiple membrane stacked electrode also exhibits high energy storage capacity.
引用
收藏
页码:17564 / 17574
页数:11
相关论文
共 61 条
[1]   Strategies for reduction of graphene oxide - A comprehensive review [J].
Agarwal, Vipul ;
Zetterlund, Per B. .
CHEMICAL ENGINEERING JOURNAL, 2021, 405
[2]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[3]   Sparsely Pillared Graphene Materials for High-Performance Supercapacitors: Improving Ion Transport and Storage Capacity [J].
Banda, Harish ;
Perie, Sandy ;
Daffos, Barbara ;
Taberna, Pierre-Louis ;
Dubois, Lionel ;
Crosnier, Olivier ;
Simon, Patrice ;
Lee, Daniel ;
De Paepe, Gael ;
Duclairoir, Florence .
ACS NANO, 2019, 13 (02) :1443-1453
[4]   Nitrogen-doped interpenetrating porous carbon/graphene networks for supercapacitor applications [J].
Chen, Zeyu ;
Zhao, Siqi ;
Zhao, Haihong ;
Zou, Yubo ;
Yu, Chuying ;
Zhong, Wenbin .
CHEMICAL ENGINEERING JOURNAL, 2021, 409
[5]   Emerging covalent organic frameworks tailored materials for electrocatalysis [J].
Cui, Xun ;
Lei, Sheng ;
Wang, Aurelia Chi ;
Gao, Likun ;
Zhang, Qing ;
Yang, Yingkui ;
Lin, Zhiqun .
NANO ENERGY, 2020, 70
[6]   Reviewing the fundamentals of supercapacitors and the difficulties involving the analysis of the electrochemical findings obtained for porous electrode materials [J].
Da Silva, Leonardo M. ;
Cesar, Reinaldo ;
Moreira, Cassio M. R. ;
Santos, Jeferson H. M. ;
De Souza, Lindomar G. ;
Pires, Bruno Morandi ;
Vicentini, Rafael ;
Nunes, Willian ;
Zanin, Hudson .
ENERGY STORAGE MATERIALS, 2020, 27 :555-590
[7]   Electrical Energy Storage for the Grid: A Battery of Choices [J].
Dunn, Bruce ;
Kamath, Haresh ;
Tarascon, Jean-Marie .
SCIENCE, 2011, 334 (6058) :928-935
[8]   Semiconductor to metal transition in two-dimensional gold and its van der Waals heterostack with graphene [J].
Forti, Stiven ;
Link, Stefan ;
Stoehr, Alexander ;
Niu, Yuran ;
Zakharov, Alexei A. ;
Coletti, Camilla ;
Starke, Ulrich .
NATURE COMMUNICATIONS, 2020, 11 (01)
[9]   Shear-Induced Interfacial Structural Conversion of Graphene Oxide to Graphene at Macroscale [J].
Gao, Xue ;
Zhang, Jie ;
Ju, Pengfei ;
Liu, Jingzhou ;
Ji, Li ;
Liu, Xiaohong ;
Ma, Tianbao ;
Chen, Lei ;
Li, Hongxuan ;
Zhou, Huidi ;
Chen, Jianmin .
ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (46)
[10]   Experimental review: chemical reduction of graphene oxide (GO) to reduced graphene oxide (rGO) by aqueous chemistry [J].
Guex, L. G. ;
Sacchi, B. ;
Peuvot, K. F. ;
Andersson, R. L. ;
Pourrahimi, A. M. ;
Strom, V. ;
Farris, S. ;
Olsson, R. T. .
NANOSCALE, 2017, 9 (27) :9562-9571