On a nonlinear elliptic eigenvalue problem

被引:15
作者
Chen, SW [1 ]
Li, SJ [1 ]
机构
[1] Acad Sinica, Inst Math, Acad Math & Syst Sci, Beijing 100080, Peoples R China
关键词
nonlinear eigenvalue problem; perturbation from symmetry; minimax theorem;
D O I
10.1016/j.jmaa.2005.02.061
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let N(lambda) be the number of the solutions of the equation: -Delta u = lambda f(u) in Omega, u = 0 on partial derivative Omega, where Omega is a bounded domain in R-N (N >= 2) with smooth boundary. Under suitable conditions on f, we proved that N(lambda) + infinity as lambda -> + infinity. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:691 / 698
页数:8
相关论文
共 6 条
[1]  
Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
[2]   SOLUTIONS OF SUPERLINEAR ELLIPTIC-EQUATIONS AND THEIR MORSE INDEXES [J].
BAHRI, A ;
LIONS, PL .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1992, 45 (09) :1205-1215
[3]  
Chang K.C, 1993, Infinite Dimensional Morse Theory and Multiple Solution Problems, V6
[4]   Selected new aspects of the calculus of variations in the large [J].
Ekeland, I ;
Ghoussoub, N .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 39 (02) :207-265
[5]   Perturbations from symmetric elliptic boundary value problems [J].
Li, SJ ;
Liu, ZL .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2002, 185 (01) :271-280
[6]  
Willem M., 1996, Minimax theorems, V24