On the Mittag-Leffler distributions

被引:32
作者
Lin, GD [1 ]
机构
[1] Acad Sinica, Inst Stat Sci, Taipei 11529, Taiwan
关键词
Mittag-Leffler; Laplace transform; completely monotone function; positive stable distribution; Levy measure;
D O I
10.1016/S0378-3758(98)00096-2
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We first prove that the Mittag-Leffler distributions belong to the class of distributions with complete monotone derivative. Then we investigate the fundamental properties of the Mittag-Leffler distributions and of their extensions, including the tail behavior of distribution, the explicit expressions for moments of all orders and for the density functions. The latter has been used to correct some inverse Laplace transforms given in the literature. As a by-product, the moments of negative (integral) orders are used to characterize the positive stable distributions with exponent alpha is an element of[1/3, 1]. (C) 1998 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:1 / 9
页数:9
相关论文
共 18 条
[1]  
[Anonymous], 1961, ADV CALCULUS
[2]  
[Anonymous], 1993, The Inverse Gaussian Distribution: A Case Study in Exponential Families"
[3]  
Badii F., 1973, TABLES LAPLACE TRANS
[4]  
BONDESSON L, 1992, GEN GAMMA CONVOLUTIO
[5]  
Erdelyi A, 1955, HIGHER TRANSCENDENTA, V3
[6]  
Feller W., 1970, INTRO PROBABILITY TH, V2
[7]  
HOFFMANNJORGENS.J, 1994, PROBABILITY VIEW STA, V1
[8]   NOTE ON A CHARACTERIZATION OF GAMMA DISTRIBUTIONS [J].
HUANG, WJ ;
CHEN, LS .
STATISTICS & PROBABILITY LETTERS, 1989, 8 (05) :485-487
[9]   NOTE ON A CHARACTERIZATION OF EXPONENTIAL-DISTRIBUTIONS [J].
KOTZ, S ;
STEUTEL, FW .
STATISTICS & PROBABILITY LETTERS, 1988, 6 (03) :201-203
[10]  
Lukacs E., 1970, CHARACTERISTIC FUNCT, V2nd