Machine learning methods for automated classification of tumors with papillary thyroid carcinoma-like nuclei: A quantitative analysis

被引:21
作者
Boehland, Moritz [1 ]
Tharun, Lars [2 ,3 ]
Scherr, Tim [1 ]
Mikut, Ralf [1 ]
Hagenmeyer, Veit [1 ]
Thompson, Lester D. R. [4 ]
Perner, Sven [2 ,3 ]
Reischl, Markus [1 ]
机构
[1] Karlsruhe Inst Technol, Inst Automat & Appl Informat, Eggenstein Leopoldshafen, Germany
[2] Univ Lubeck, Inst Pathol, Lubeck, Germany
[3] Univ Hosp Schleswig Holstein, Campus Luebeck, Lubeck, Germany
[4] Southern Calif Permanente Med Grp, Dept Pathol, Woodland Hills Med Ctr, Los Angeles, CA USA
关键词
FOLLICULAR LESIONS; SEGMENTATION; INTEROBSERVER; DIAGNOSIS; FEATURES;
D O I
10.1371/journal.pone.0257635
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
When approaching thyroid gland tumor classification, the differentiation between samples with and without "papillary thyroid carcinoma-like" nuclei is a daunting task with high inter-observer variability among pathologists. Thus, there is increasing interest in the use of machine learning approaches to provide pathologists real-time decision support. In this paper, we optimize and quantitatively compare two automated machine learning methods for thyroid gland tumor classification on two datasets to assist pathologists in decision-making regarding these methods and their parameters. The first method is a feature-based classification originating from common image processing and consists of cell nucleus segmentation, feature extraction, and subsequent thyroid gland tumor classification utilizing different classifiers. The second method is a deep learning-based classification which directly classifies the input images with a convolutional neural network without the need for cell nucleus segmentation. On the Tharun and Thompson dataset, the feature-based classification achieves an accuracy of 89.7% (Cohen's Kappa 0.79), compared to the deep learning-based classification of 89.1% (Cohen's Kappa 0.78). On the Nikiforov dataset, the feature-based classification achieves an accuracy of 83.5% (Cohen's Kappa 0.46) compared to the deep learning-based classification 77.4% (Cohen's Kappa 0.35). Thus, both automated thyroid tumor classification methods can reach the classification level of an expert pathologist. To our knowledge, this is the first study comparing feature-based and deep learning-based classification regarding their ability to classify samples with and without papillary thyroid carcinoma-like nuclei on two large-scale datasets.
引用
收藏
页数:21
相关论文
共 29 条
[1]   Albumentations: Fast and Flexible Image Augmentations [J].
Buslaev, Alexander ;
Iglovikov, Vladimir I. ;
Khvedchenya, Eugene ;
Parinov, Alex ;
Druzhinin, Mikhail ;
Kalinin, Alexandr A. .
INFORMATION, 2020, 11 (02)
[2]   Nucleus segmentation across imaging experiments: the 2018 Data Science Bowl [J].
Caicedo, Juan C. ;
Goodman, Allen ;
Karhohs, Kyle W. ;
Cimini, Beth A. ;
Ackerman, Jeanelle ;
Haghighi, Marzieh ;
Heng, CherKeng ;
Becker, Tim ;
Minh Doan ;
McQuin, Claire ;
Rohban, Mohammad ;
Singh, Shantanu ;
Carpenter, Anne E. .
NATURE METHODS, 2019, 16 (12) :1247-+
[3]  
Cawley GC, 2010, J MACH LEARN RES, V11, P2079
[4]  
Deng J, 2009, PROC CVPR IEEE, P248, DOI 10.1109/CVPRW.2009.5206848
[5]   Deep learning prediction of BRAF-RAS gene expression signature identifies noninvasive follicular thyroid neoplasms with papillary-like nuclear features [J].
Dolezal, James M. ;
Trzcinska, Anna ;
Liao, Chih-Yi ;
Kochanny, Sara ;
Blair, Elizabeth ;
Agrawal, Nishant ;
Keutgen, Xavier M. ;
Angelos, Peter ;
Cipriani, Nicole A. ;
Pearson, Alexander T. .
MODERN PATHOLOGY, 2021, 34 (05) :862-874
[6]   Weakly supervised instance learning for thyroid malignancy prediction from whole slide cytopathology images [J].
Dov, David ;
Kovalsky, Shahar Z. ;
Assaad, Serge ;
Cohen, Jonathan ;
Range, Danielle Elliott ;
Pendse, Avani A. ;
Henao, Ricardo ;
Carin, Lawrence .
MEDICAL IMAGE ANALYSIS, 2021, 67 (67)
[7]   Interobserver and Intraobserver Variation Among Experts in the Diagnosis of Thyroid Follicular Lesions With Borderline Nuclear Features of Papillary Carcinoma [J].
Elsheikh, Tarik M. ;
Asa, Sylvia L. ;
Chan, John K. C. ;
DeLellis, Ronald A. ;
Heffess, Clara S. ;
LiVolsi, Virginia A. ;
Wenig, Bruce M. .
AMERICAN JOURNAL OF CLINICAL PATHOLOGY, 2008, 130 (05) :736-744
[8]   Faster AutoAugment: Learning Augmentation Strategies Using Backpropagation [J].
Hataya, Ryuichiro ;
Zdenek, Jan ;
Yoshizoe, Kazuki ;
Nakayama, Hideki .
COMPUTER VISION - ECCV 2020, PT XXV, 2020, 12370 :1-16
[9]   Deep Residual Learning for Image Recognition [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :770-778
[10]   Dataset of segmented nuclei in hematoxylin and eosin stained histopathology images of ten cancer types [J].
Hou, Le ;
Gupta, Rajarsi ;
Van Arnam, John S. ;
Zhang, Yuwei ;
Sivalenka, Kaustubh ;
Samaras, Dimitris ;
Kurc, Tahsin M. ;
Saltz, Joel H. .
SCIENTIFIC DATA, 2020, 7 (01)