On the maximum order of torsion elements in GL(n,Z) and Aut(Fn)

被引:13
作者
Levitt, G [1 ]
Nicolas, JL
机构
[1] Univ Toulouse 3, UMR CNRS 5580, Lab Emile Picard, F-31062 Toulouse 4, France
[2] Univ Lyon 1, UPRES A CNRS 5028, Inst Girard Desargues, F-69622 Villeurbanne, France
关键词
D O I
10.1006/jabr.1998.7481
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the maximum order of torsion elements in GL(n,Z) and Aut(F-n), denoted G(n) and H(n), respectively. We prove a Landau-type estimate log G(n) similar to root n log n, and we show that H(n) = G(n) if and only if n not equal 2,6,12. (C) 1998 Academic Press.
引用
收藏
页码:630 / 642
页数:13
相关论文
共 15 条
[1]  
BAUMSLAG G, 1968, MATH ANN, V175, P315
[2]   THE LARGEST PRIME DIVIDING THE MAXIMAL ORDER OF AN ELEMENT OF S-N [J].
GRANTHAM, J .
MATHEMATICS OF COMPUTATION, 1995, 64 (209) :407-410
[3]  
Katznelson Y., 1994, EXPO MATH, V12, P453
[4]  
KHRAMTSOV DG, 1985, MATH NOTES+, V38, P721, DOI 10.1007/BF01163707
[5]  
KULKARNI RS, LATTICES TREES AUTOM
[6]  
Landau E., 1953, HDB LEHRE VERTEILUNG, VI, P222
[7]  
LEVITT G, UNPUB
[8]   ASYMPTOTIC EVALUATION OF THE MAXIMUM-ORDER OF A SYMMETRIC-GROUP ELEMENT [J].
MASSIAS, JP ;
NICOLAS, JL ;
ROBIN, G .
ACTA ARITHMETICA, 1988, 50 (03) :221-242
[9]   THE MAXIMUM ORDER OF AN ELEMENT OF A FINITE SYMMETRICAL GROUP [J].
MILLER, W .
AMERICAN MATHEMATICAL MONTHLY, 1987, 94 (06) :497-506
[10]  
Nicolas J.-L., 1968, ACTA ARITH, V14, P315