Approximating metal-insulator transitions

被引:2
作者
Danieli, Carlo [1 ]
Rayanov, Kristian [1 ]
Pavlov, Boris [2 ]
Martin, Gaven [2 ]
Flach, Sergej [1 ]
机构
[1] Massey Univ, Ctr Theoret Chem & Phys, New Zealand Inst Adv Study, Auckland, New Zealand
[2] Massey Univ, New Zealand Inst Adv Study, Auckland, New Zealand
来源
INTERNATIONAL JOURNAL OF MODERN PHYSICS B | 2015年 / 29卷 / 06期
关键词
Quasiperiodic; Aubry-Andre model; metal-insulator transitions; QUASI-PERIODIC SYSTEMS; SCHRODINGER-EQUATION; MATHIEU OPERATOR; QUANTUM-SYSTEMS; HARPER MODEL; SPECTRUM; LOCALIZATION; CONVOLUTIONS; CONTINUITY; DIFFUSION;
D O I
10.1142/S0217979215500368
中图分类号
O59 [应用物理学];
学科分类号
摘要
We consider quantum wave propagation in one-dimensional quasiperiodic lattices. We propose an iterative construction of quasiperiodic potentials from sequences of potentials with increasing spatial period. At each finite iteration step, the eigenstates reflect the properties of the limiting quasiperiodic potential properties up to a controlled maximum system size. We then observe approximate Metal-Insulator Transitions (MIT) at the finite iteration steps. We also report evidence on mobility edges, which are at variance to the celebrated Aubry-Andre model. The dynamics near the MIT shows a critical slowing down of the ballistic group velocity in the metallic phase, similar to the divergence of the localization length in the insulating phase.
引用
收藏
页数:13
相关论文
共 28 条
[1]   ABSENCE OF DIFFUSION IN CERTAIN RANDOM LATTICES [J].
ANDERSON, PW .
PHYSICAL REVIEW, 1958, 109 (05) :1492-1505
[2]  
Aubry S., 1980, Annals of the Israel Physical Society, V3, P133
[3]  
Avila A., 2008, ARXIV08102965
[4]   The Ten Martini Problem [J].
Avila, Artur ;
Jitomirskaya, Svetlana .
ANNALS OF MATHEMATICS, 2009, 170 (01) :303-342
[5]  
Bell J., 1987, J PHYS A, V20, pL739
[6]   Mobility edges in bichromatic optical lattices [J].
Boers, Dave J. ;
Goedeke, Benjamin ;
Hinrichs, Dennis ;
Holthaus, Martin .
PHYSICAL REVIEW A, 2007, 75 (06)
[7]  
Bos L, 1999, CH CRC RES NOTES, V399, P308
[8]   Correlated metallic two-particle bound states in quasiperiodic chains [J].
Flach, Sergej ;
Ivanchenko, Mikhail ;
Khomeriki, Ramaz .
EPL, 2012, 98 (06)
[9]   NEW CLASS OF LEVEL STATISTICS IN QUANTUM-SYSTEMS WITH UNBOUNDED DIFFUSION [J].
GEISEL, T ;
KETZMERICK, R ;
PETSCHEL, G .
PHYSICAL REVIEW LETTERS, 1991, 66 (13) :1651-1654
[10]   Duality and singular continuous spectrum in the almost Mathieu equation [J].
Gordon, AY ;
Jitomirskaya, S ;
Last, Y ;
Simon, B .
ACTA MATHEMATICA, 1997, 178 (02) :169-183