Asymptotic spectral flow for Dirac operators

被引:0
作者
Taubes, Clifford Henry [1 ]
机构
[1] Harvard Univ, Dept Math, Cambridge, MA 02138 USA
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let M denote a compact, oriented Riemannian manifold of odd dimension n >= 3. Suppose that F -->M is a principle bundle with structure group Spin(n) x({+/-1}) U(k) such that F/U(k) is the priniciple SO( n) bundle of orthonormal frames for TM. A connection on the principle bundle F/Spin(n) --> M determines a self-adjoint Dirac operator on a certain associated Clifford module. This understood, suppose that {A(s)}(s is an element of[0,1]) is a differentiable path of such connections. An estimate is given here for the spectral flow along the corresponding 1-parameter family of Dirac operators.
引用
收藏
页码:569 / 587
页数:19
相关论文
共 8 条
[1]   SPECTRAL ASYMMETRY AND RIEMANNIAN GEOMETRY .1. [J].
ATIYAH, MF ;
PATODI, VK ;
SINGER, IM .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1975, 77 (JAN) :43-69
[2]  
BERLINE N, 2004, HET KERNELS DIRAC OP
[3]   HEAT KERNEL ESTIMATES AND LOWER BOUND OF EIGENVALUES [J].
CHENG, SY ;
LI, P .
COMMENTARII MATHEMATICI HELVETICI, 1981, 56 (03) :327-338
[4]  
KATO T, 1976, PERTUBATION THEORY L
[5]  
MOCHANOV S, 1975, RUSS MATH SURV, V30, P1
[6]  
PARKER TH, UNPUB GEODESICS APPR
[7]   The Seiberg-Witten equations and the Weinstein conjecture [J].
Taubes, Clifford Henry .
GEOMETRY & TOPOLOGY, 2007, 11 :2117-2202
[8]   CONNECTIONS WITH LP BOUNDS ON CURVATURE [J].
UHLENBECK, KK .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1982, 83 (01) :31-42