Development and validation of a deep-learning algorithm for the detection of polyps during colonoscopy

被引:349
作者
Wang, Pu [1 ,2 ]
Xiao, Xiao [3 ]
Brown, Jeremy R. Glissen [4 ,5 ]
Berzin, Tyler M. [4 ,5 ]
Tu, Mengtian [1 ,2 ]
Xiong, Fei [1 ,2 ]
Hu, Xiao [1 ,2 ]
Liu, Peixi [1 ,2 ]
Song, Yan [1 ,2 ]
Zhang, Di [1 ,2 ]
Yang, Xue [1 ,2 ]
Li, Liangping [1 ,2 ]
He, Jiong [3 ]
Yi, Xin [3 ]
Liu, Jingjia [3 ]
Liu, Xiaogang [1 ,2 ]
机构
[1] Sichuan Acad Med Sci, Chengdu, Sichuan, Peoples R China
[2] Sichuan Prov Peoples Hosp, Chengdu, Sichuan, Peoples R China
[3] Shanghai Wision Al Co Ltd, Shanghai, Peoples R China
[4] Beth Israel Deaconess Med Ctr, Boston, MA 02215 USA
[5] Harvard Med Sch, Ctr Adv Endoscopy, Boston, MA USA
关键词
COMPUTER-AIDED DIAGNOSIS; COLORECTAL-CANCER; MISS RATE; CLASSIFICATION; PARTICIPATION; POLYPECTOMY; MULTICENTER; GUIDELINES; INCREASES; HISTOLOGY;
D O I
10.1038/s41551-018-0301-3
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
The detection and removal of precancerous polyps via colonoscopy is the gold standard for the prevention of colon cancer. However, the detection rate of adenomatous polyps can vary significantly among endoscopists. Here, we show that a machine-learning algorithm can detect polyps in clinical colonoscopies, in real time and with high sensitivity and specificity. We developed the deep-learning algorithm by using data from 1,290 patients, and validated it on newly collected 27,113 colonoscopy images from 1,138 patients with at least one detected polyp (per-image-sensitivity, 94.38%; per-image-specificity, 95.92%; area under the receiver operating characteristic curve, 0.984), on a public database of 612 polyp-containing images (per-image-sensitivity, 88.24%), on 138 colonoscopy videos with histologically confirmed polyps (per-image-sensitivity of 91.64%; per-polyp-sensitivity, 100%), and on 54 unaltered full-range colonoscopy videos without polyps (per-image-specificity, 95.40%). By using a multi-threaded processing system, the algorithm can process at least 25 frames per second with a latency of 76.80 +/- 5.60 ms in real-time video analysis. The software may aid endoscopists while performing colonoscopies, and help assess differences in polyp and adenoma detection performance among endoscopists.
引用
收藏
页码:741 / 748
页数:8
相关论文
共 41 条
[1]   The Miss Rate for Colorectal Adenoma Determined by Quality-Adjusted, Back-to-Back Colonoscopies [J].
Ahn, Sang Bong ;
Han, Dong Soo ;
Bae, Joong Ho ;
Byun, Tae Jun ;
Kim, Jong Pyo ;
Eun, Chang Soo .
GUT AND LIVER, 2012, 6 (01) :64-70
[2]   Nurse Observation During Colonoscopy Increases Polyp Detection: A Randomized Prospective Study [J].
Aslanian, Harry R. ;
Shieh, Frederick K. ;
Chan, Francis W. ;
Ciarleglio, Maria M. ;
Deng, Yanhong ;
Rogart, Jason N. ;
Jamidar, Priya A. ;
Siddiqui, Uzma D. .
AMERICAN JOURNAL OF GASTROENTEROLOGY, 2013, 108 (02) :166-172
[3]   SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation [J].
Badrinarayanan, Vijay ;
Kendall, Alex ;
Cipolla, Roberto .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2017, 39 (12) :2481-2495
[4]   Area under the Free-Response ROC Curve (FROC) and a Related Summary Index [J].
Bandos, Andriy I. ;
Rockette, Howard E. ;
Song, Tao ;
Gur, David .
BIOMETRICS, 2009, 65 (01) :247-256
[5]   Comparative Validation of Polyp Detection Methods in Video Colonoscopy: Results From the MICCAI 2015 Endoscopic Vision Challenge [J].
Bernal, Jorge ;
Tajkbaksh, Nima ;
Sanchez, Francisco Javier ;
Matuszewski, Bogdan J. ;
Chen, Hao ;
Yu, Lequan ;
Angermann, Quentin ;
Romain, Olivier ;
Rustad, Bjorn ;
Balasingham, Ilangko ;
Pogorelov, Konstantin ;
Choi, Sungbin ;
Debard, Quentin ;
Maier-Hein, Lena ;
Speidel, Stefanie ;
Stoyanov, Danail ;
Brandao, Patrick ;
Cordova, Henry ;
Sanchez-Montes, Cristina ;
Gurudu, Suryakanth R. ;
Fernandez-Esparrach, Gloria ;
Dray, Xavier ;
Liang, Jianming ;
Histace, Aymeric .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2017, 36 (06) :1231-1249
[6]  
Brandao P, 2018, J. Med. Robot. Res., V3
[7]   Protection From Colorectal Cancer After Colonoscopy A Population-Based, Case-Control Study [J].
Brenner, Hermann ;
Chang-Claude, Jenny ;
Seiler, Christoph M. ;
Rickert, Alexander ;
Hoffmeister, Michael .
ANNALS OF INTERNAL MEDICINE, 2011, 154 (01) :22-U156
[8]   Trainee participation is associated with increased small adenoma detection [J].
Buchner, Anna M. ;
Shahid, Muhammad W. ;
Heckman, Michael G. ;
Diehl, Nancy N. ;
McNeil, Rebecca B. ;
Cleveland, Patrick ;
Gill, Kanwar R. ;
Schore, Anthony ;
Ghabril, Marwan ;
Raimondo, Massimo ;
Gross, Seth A. ;
Wallace, Michael B. .
GASTROINTESTINAL ENDOSCOPY, 2011, 73 (06) :1223-1231
[9]   Real-time differentiation of adenomatous and hyperplastic diminutive colorectal polyps during analysis of unaltered videos of standard colonoscopy using a deep learning model [J].
Byrne, Michael F. ;
Chapados, Nicolas ;
Soudan, Florian ;
Oertel, Clemens ;
Linares Perez, Milagros ;
Kelly, Raymond ;
Iqbal, Nadeem ;
Chandelier, Florent ;
Rex, Douglas K. .
GUT, 2019, 68 (01) :94-100
[10]   Machine Learning and Prediction in Medicine - Beyond the Peak of Inflated Expectations [J].
Chen, Jonathan H. ;
Asch, Steven M. .
NEW ENGLAND JOURNAL OF MEDICINE, 2017, 376 (26) :2507-2509