Distance-regular graphs where the distance-d graph has fewer distinct eigenvalues

被引:5
作者
Brouwer, A. E. [1 ]
Fiol, M. A. [1 ]
机构
[1] Univ Politecn Cataluna, BarcelonaTech, Dept Matemat Aplicada 4, Barcelona, Spain
关键词
Distance-regular graph; Kneser graph; Bose-Mesner algebra; Half-antipodality;
D O I
10.1016/j.laa.2015.04.020
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let the Kneser graph K of a distance-regular graph Gamma be the graph on the same vertex set as Gamma, where two vertices are adjacent when they have maximal distance in Gamma. We study the situation where the Bose-Mesner algebra of Gamma is not generated by the adjacency matrix of K. In particular, we obtain strong results in the so-called 'half antipodal' case. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:115 / 126
页数:12
相关论文
共 4 条
[1]  
Brouwer A.E., 1989, Distance-Regular Graphs
[2]   The eigenvalues of oppositeness graphs in buildings of spherical type [J].
Brouwer, Andries E. .
COMBINATORICS AND GRAPHS, 2010, 531 :1-10
[3]  
Fiol M. A., 2000, ELECT J COMBIN, V7, P51
[4]   Some spectral characterizations of strongly distance-regular graphs [J].
Fiol, MA .
COMBINATORICS PROBABILITY & COMPUTING, 2001, 10 (02) :127-135