Nanocarbon-copper thin film as transparent electrode

被引:16
作者
Isaacs, R. A. [1 ]
Zhu, H. [1 ]
Preston, Colin [1 ]
Mansour, A. [2 ]
LeMieux, M. [1 ]
Zavalij, P. Y. [3 ]
Jaim, H. M. Iftekhar [1 ]
Rabin, O. [1 ,4 ]
Hu, L. [1 ]
Salamanca-Riba, L. G. [1 ]
机构
[1] Univ Maryland, Mat Sci & Engn Dept, College Pk, MD 20742 USA
[2] Naval Surface Warfare Ctr, Carderock Div, West Bethesda, MD 20817 USA
[3] Univ Maryland, Dept Chem & Biochem, College Pk, MD 20742 USA
[4] Univ Maryland, Inst Res Elect & Appl Phys, College Pk, MD 20742 USA
关键词
NANOWIRE NETWORKS; METAL; NANOFIBERS; DEPOSITION; SURFACE;
D O I
10.1063/1.4921263
中图分类号
O59 [应用物理学];
学科分类号
摘要
Researchers seeking to enhance the properties of metals have long pursued incorporating carbon in the metallic host lattice in order to combine the strongly bonded electrons in the metal lattice that yield high ampacity and the free electrons available in carbon nanostructures that give rise to high conductivity. The incorporation of carbon nanostructures into the copper lattice has the potential to improve the current density of copper to meet the ever-increasing demands of nanoelectronic devices. We report on the structure and properties of carbon incorporated in concentrations up to 5 wt. % (similar to 22 at. %) into the crystal structure of copper. Carbon nanoparticles of 5 nm-200 nm in diameter in an interconnecting carbon matrix are formed within the bulk Cu samples. The carbon does not phase separate after subsequent melting and re-solidification despite the absence of a predicted solid solution at such concentrations in the C-Cu binary phase diagram. This material, so-called, Cu covetic, makes deposition of Cu films containing carbon with similar microstructure to the metal possible. Copper covetic films exhibit greater transparency, higher conductivity, and resistance to oxidation than pure copper films of the same thickness, making them a suitable choice for transparent conductors. (C) 2015 AIP Publishing LLC.
引用
收藏
页数:5
相关论文
共 28 条
[1]  
Bae S, 2010, NAT NANOTECHNOL, V5, P574, DOI [10.1038/nnano.2010.132, 10.1038/NNANO.2010.132]
[2]   Surface and grain boundary contributions in the electrical resistivity of metallic nanofilms [J].
Camacho, Juan M. ;
Oliva, A. I. .
THIN SOLID FILMS, 2006, 515 (04) :1881-1885
[3]   Pulsed laser deposition and annealing of Bi2-xSbxTe3 thin films for p-type thermoelectric elements [J].
Cornett, Jane E. ;
Rabin, Oded .
SOLID-STATE ELECTRONICS, 2014, 101 :106-115
[4]  
D'Amore M, 2005, INT S EL COMP CHIC, V3, P900
[5]   Silver Nanowire Networks as Flexible, Transparent, Conducting Films: Extremely High DC to Optical Conductivity Ratios [J].
De, Sukanta ;
Higgins, Thomas M. ;
Lyons, Philip E. ;
Doherty, Evelyn M. ;
Nirmalraj, Peter N. ;
Blau, Werner J. ;
Boland, John J. ;
Coleman, Jonathan N. .
ACS NANO, 2009, 3 (07) :1767-1774
[6]  
Dellinger J.H., 1911, The temperature coefficient of resistance of copper No
[7]   Graphene: Status and Prospects [J].
Geim, A. K. .
SCIENCE, 2009, 324 (5934) :1530-1534
[8]   Doping graphene with metal contacts [J].
Giovannetti, G. ;
Khomyakov, P. A. ;
Brocks, G. ;
Karpan, V. M. ;
van den Brink, J. ;
Kelly, P. J. .
PHYSICAL REVIEW LETTERS, 2008, 101 (02)
[9]   Copper Nanowires as Fully Transparent Conductive Electrodes [J].
Guo, Huizhang ;
Lin, Na ;
Chen, Yuanzhi ;
Wang, Zhenwei ;
Xie, Qingshui ;
Zheng, Tongchang ;
Gao, Na ;
Li, Shuping ;
Kang, Junyong ;
Cai, Duanjun ;
Peng, Dong-Liang .
SCIENTIFIC REPORTS, 2013, 3
[10]   Emerging Transparent Electrodes Based on Thin Films of Carbon Nanotubes, Graphene, and Metallic Nanostructures [J].
Hecht, David S. ;
Hu, Liangbing ;
Irvin, Glen .
ADVANCED MATERIALS, 2011, 23 (13) :1482-1513