共 48 条
Synthesis, characterization, DNA interaction and potential applications of gold nanoparticles functionalized with Acridine Orange fluorophores
被引:29
作者:
Biver, Tarita
[1
]
Eltugral, Nurettin
[1
]
Pucci, Andrea
[1
]
Ruggeri, Giacomo
[1
]
Schena, Alberto
[2
]
Secco, Fernando
[1
]
Venturini, Marcella
[1
]
机构:
[1] Univ Pisa, Dept Chem & Ind Chem, I-56126 Pisa, Italy
[2] Ecole Polytech Fed Lausanne, Stn 6, Inst Chem Sci & Engn, CH-1015 Lausanne, Switzerland
关键词:
NUCLEIC-ACIDS;
HETEROAROMATIC-COMPOUNDS;
INTERCALATING LIGANDS;
SILVER NANOPARTICLES;
SELF-AGGREGATION;
CELLULAR UPTAKE;
BINDING;
PROFLAVINE;
SYSTEM;
SIZE;
D O I:
10.1039/c0dt01371d
中图分类号:
O61 [无机化学];
学科分类号:
070301 ;
081704 ;
摘要:
Two new water-soluble gold nanoparticles (AO-TEG-Au and AO-PEG-Au NPs) are prepared and characterized. They are stabilized by thioalkylated oligoethylene glycols and functionalized with fluorescent Acridine Orange (AO) derivatives. Despite the different core sizes (11.8 and 3.9 nm respectively) and shell composition, they are both well dispersed and are stable in water, even if some self-aggregation is observed in the case of AO-TEG-Au NPs. However, AO-PEG-Au NPs show much lower emission efficiency with respect to AO-TEG-Au NPs. Spectrophotometric and spectrofluorometric experiments indicate that both types of nanoparticle are able to bind to calf thymus DNA, either by external binding or partial intercalation. Preliminary FACS flow cytometry tests seem to indicate that the AO-TEG-Au nanoparticle is able to cross the cell membrane where it is absorbed by Chinese hamster ovary (CHO) cells at the picomolar concentration level.
引用
收藏
页码:4190 / 4199
页数:10
相关论文