Rapid cGMP manufacturing of COVID-19 monoclonal antibody using stable CHO cell pools

被引:22
作者
Agostinetto, Rita [1 ]
Rossi, Mara [1 ]
Dawson, Jessica [2 ]
Lim, Angela [2 ]
Simoneau, Mirva H. [3 ]
Boucher, Cyril [3 ]
Valldorf, Bernhard [4 ]
Ross-Gillespie, Adin [3 ]
Jardine, Joseph G. [5 ,6 ,7 ]
Sok, Devin [5 ,6 ,7 ]
Burton, Dennis R. [5 ,7 ,8 ]
Hassell, Thomas [6 ]
Broly, Herve [3 ]
Palinsky, Wolf [3 ]
Dupraz, Philippe [3 ]
Feinberg, Mark [6 ]
Dey, Antu K. [6 ]
机构
[1] MerckSerono SpA, Guidonia Di Montecello, Italy
[2] EMD Serono, Billerica, MA USA
[3] Ares Trading SA Merck SA Switzerland, Aubonne, Switzerland
[4] Merck KGaA, Darmstadt, Germany
[5] Scripps Res Inst, Dept Immunol & Microbiol, La Jolla, CA 92037 USA
[6] IAVI, 125 Broad St, New York, NY 10004 USA
[7] IAVI, Scripps Res Inst, Neutralizing Antibody Ctr, La Jolla, CA USA
[8] MIT & Harvard, Ragon Inst MGH, Cambridge, MA USA
关键词
cGMP manufacturing; CHO pools; COVID-19; monoclonal antibody; BIOTHERAPEUTICS; EXPRESSION; PRODUCT;
D O I
10.1002/bit.27995
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Therapeutic proteins, including monoclonal antibodies, are typically manufactured using clonally derived, stable host cell lines, since consistent and predictable cell culture performance is highly desirable. However, selecting and preparing banks of stable clones takes considerable time, which inevitably extends overall development timelines for new therapeutics by delaying the start of subsequent activities, such as the scale-up of manufacturing processes. In the context of the coronavirus disease 2019 (COVID-19) pandemic, with its intense pressure for accelerated development strategies, we used a novel transposon-based Leap-In Transposase (R) system to rapidly generate high-titer stable pools and then used them directly for large scale-manufacturing of an anti-severe acute respiratory syndrome coronavirus 2 monoclonal antibody under cGMP. We performed the safety testing of our non-clonal cell bank, then used it to produce material at a 200L-scale for preclinical safety studies and formulation development work, and thereafter at 2000L scale for supply of material for a Phase 1 clinical trial. Testing demonstrated the comparability of critical product qualities between the two scales and, more importantly, that our final clinical trial product met all pre-set product quality specifications. The above expediated approach provided clinical trial material within 4.5 months, in comparison to 12-14 months for production of clinical trial material via the conventional approach.
引用
收藏
页码:663 / 666
页数:4
相关论文
共 14 条
[1]   Enabling speed to clinic for monoclonal antibody programs using a pool of clones for IND-enabling toxicity studies [J].
Bolisetty, Parimala ;
Tremml, Gabi ;
Xu, Sen ;
Khetan, Anurag .
MABS, 2020, 12 (01)
[2]   Comparative study of therapeutic antibody candidates derived from mini-pool and clonal cell lines [J].
Fan, Lianchun ;
Rizzi, Giovanni ;
Bierilo, Kathleen ;
Tian, Jun ;
Yee, Joon Chong ;
Russell, Reb ;
Das, Tapan K. .
BIOTECHNOLOGY PROGRESS, 2017, 33 (06) :1456-1462
[3]   A strategy to accelerate protein production from a pool of clones in Chinese hamster ovary cells for toxicology studies [J].
Hu, Zhilan ;
Hsu, Wendy ;
Pynn, Abby ;
Ng, Domingos ;
Quicho, Donna ;
Adem, Yilma ;
Kwong, Zephie ;
Mauger, Brad ;
Joly, John ;
Snedecor, Bradley ;
Laird, Michael W. ;
Andersen, Dana C. ;
Shen, Amy .
BIOTECHNOLOGY PROGRESS, 2017, 33 (06) :1449-1455
[4]   Developing therapeutic monoclonal antibodies at pandemic pace [J].
Kelley, Brian .
NATURE BIOTECHNOLOGY, 2020, 38 (05) :540-545
[5]   Accelerating patient access to novel biologics using stable pool-derived product for non-clinical studies and single clone-derived product for clinical studies [J].
Munro, Trent P. ;
Le, Kim ;
Le, Huong ;
Zhang, Li ;
Stevens, Jennitte ;
Soice, Neil ;
Benchaar, Sabrina A. ;
Hong, Robert W. ;
Goudar, Chetan T. .
BIOTECHNOLOGY PROGRESS, 2017, 33 (06) :1476-1482
[6]   GENETICS OF SOMATIC MAMMALIAN CELLS .3. LONG-TERM CULTIVATION OF EUPLOID CELLS FROM HUMAN AND ANIMAL SUBJECTS [J].
PUCK, TT ;
CIECIURA, SJ ;
ROBINSON, A .
JOURNAL OF EXPERIMENTAL MEDICINE, 1958, 108 (06) :945-&
[7]   Evaluation of piggyBac-mediated CHO pools to enable material generation to support GLP toxicology studies [J].
Rajendra, Yashas ;
Balasubramanian, Sowmya ;
McCracken, Neil A. ;
Norris, Dawn L. ;
Lian, Zhirui ;
Schmitt, Matthew G. ;
Frye, Christopher C. ;
Barnard, Gavin C. .
BIOTECHNOLOGY PROGRESS, 2017, 33 (06) :1436-1448
[8]   Bioreactor scale up and protein product quality characterization of piggyBac transposon derived CHO pools [J].
Rajendra, Yashas ;
Balasubramanian, Sowmya ;
Peery, Robert B. ;
Swartling, James R. ;
McCracken, Neil A. ;
Norris, Dawn L. ;
Frye, Christopher C. ;
Barnard, Gavin C. .
BIOTECHNOLOGY PROGRESS, 2017, 33 (02) :534-540
[9]   Accelerating and de-risking CMC development with transposon-derived manufacturing cell lines [J].
Rajendran, Sowmya ;
Balasubramanian, Sowmya ;
Webster, Lynn ;
Lee, Maggie ;
Vavilala, Divya ;
Kulikov, Nicolay ;
Choi, Jessica ;
Tang, Calvin ;
Hunter, Molly ;
Wang, Rebecca ;
Kaur, Harpreet ;
Karunakaran, Surya ;
Sitaraman, Varsha ;
Minshull, Jeremy ;
Boldog, Ferenc .
BIOTECHNOLOGY AND BIOENGINEERING, 2021, 118 (06) :2301-2311
[10]   Strategic deployment of CHO expression platforms to deliver Pfizer's Monoclonal Antibody Portfolio [J].
Scarcelli, John J. ;
Shang, Tanya Q. ;
Iskra, Tim ;
Allen, Martin J. ;
Zhang, Lin .
BIOTECHNOLOGY PROGRESS, 2017, 33 (06) :1463-1467