Crystal structure of the full Swi2/Snf2 remodeler Mot1 in the resting state

被引:5
|
作者
Butryn, Agata [1 ,2 ,5 ]
Woike, Stephan [1 ,2 ]
Shetty, Savera J. [3 ]
Auble, David T. [3 ,5 ]
Hopfner, Karl-Peter [1 ,2 ,4 ]
机构
[1] Ludwig Maximilians Univ Munchen, Dept Biochem, Munich, Germany
[2] Ludwig Maximilians Univ Munchen, Gene Ctr, Munich, Germany
[3] Univ Virginia Hlth Syst, Dept Biochem & Mol Genet, Charlottesville, VA USA
[4] Ctr Integrated Prot Sci Munich, Munich, Germany
[5] Diamond Light Source Ltd, Harwell Sci & Innovat Campus, Didcot, Oxon, England
来源
ELIFE | 2018年 / 7卷
基金
美国国家卫生研究院;
关键词
TATA-BINDING PROTEIN; CHROMATIN REMODELER; DNA TRANSLOCATION; ATPASE; TRANSCRIPTION; TBP; MECHANISM; DISPLACEMENT; COMPLEX; SYSTEM;
D O I
10.7554/eLife.37774
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Swi2/Snf2 ATPases remodel protein:DNA complexes in all of the fundamental chromosome-associated processes. The single-subunit remodeler Mot1 dissociates TATA box-binding protein (TBP):DNA complexes and provides a simple model for obtaining structural insights into the action of Swi2/Snf2 ATPases. Previously we reported how the N-terminal domain of Mot1 binds TBP, NC2 and DNA, but the location of the C-terminal ATPase domain remained unclear (Butryn et al., 2015). Here, we report the crystal structure of the near full-length Mot1 from Chaetomium thermophilum. Our data show that Mot1 adopts a ring like structure with a catalytically inactive resting state of the ATPase. Biochemical analysis suggests that TBP binding switches Mot1 into an ATP hydrolysis-competent conformation. Combined with our previous results, these data significantly improve the structural model for the complete Mot1:TBP:DNA complex and suggest a general mechanism for Mot1 action.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Swi2/Snf2 remodelers: hybrid views on hybrid molecular machines
    Hopfner, Karl-Peter
    Gerhold, Christian-Benedikt
    Lakomek, Kristina
    Wollmann, Petra
    CURRENT OPINION IN STRUCTURAL BIOLOGY, 2012, 22 (02) : 225 - 233
  • [22] IDENTIFICATION AND CHARACTERIZATION OF DROSOPHILA RELATIVES OF THE YEAST TRANSCRIPTIONAL ACTIVATOR SNF2/SWI2
    ELFRING, LK
    DEURING, R
    MCCALLUM, CM
    PETERSON, CL
    TAMKUN, JW
    MOLECULAR AND CELLULAR BIOLOGY, 1994, 14 (04) : 2225 - 2234
  • [23] Effects of RapA, the bacterial SWI2/SNF2 family factor, on transcription in vivo
    Proshkin, S.
    Mironov, A.
    FEBS JOURNAL, 2013, 280 : 40 - 40
  • [24] Structure of the SWI2/SNF2 chromatin-remodeling domain of eukaryotic Rad54
    Nicolas H Thomä
    Bryan K Czyzewski
    Andrei A Alexeev
    Alexander V Mazin
    Stephen C Kowalczykowski
    Nikola P Pavletich
    Nature Structural & Molecular Biology, 2005, 12 : 350 - 356
  • [25] Composition and functional specificity of SWI2/SNF2 class chromatin remodeling complexes
    Mohrmann, L
    Verrijzer, CP
    BIOCHIMICA ET BIOPHYSICA ACTA-GENE STRUCTURE AND EXPRESSION, 2005, 1681 (2-3): : 59 - 73
  • [26] The Swi2/Snf2 Bromodomain Is Important for the Full Binding and Remodeling Activity of the SWI/SNF Complex on H3-and H4-acetylated Nucleosomes
    Awad, Salma
    Hassan, Ahmed H.
    RECENT ADVANCES IN CLINICAL ONCOLOGY, 2008, 1138 : 366 - 375
  • [27] Structural basis for activation of Swi2/Snf2 ATPase RapA by RNA polymerase
    Shi, Wei
    Zhou, Wei
    Chen, Ming
    Yang, Yang
    Hu, Yangbo
    Liu, Bin
    NUCLEIC ACIDS RESEARCH, 2021, 49 (18) : 10707 - 10716
  • [28] Structure and function of RapA: A bacterial Swi2/Snf2 protein required for RNA polymerase recycling in transcription
    Jin, Ding Jun
    Zhou, Yan Ning
    Shaw, Gary
    Ji, Xinhua
    BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS, 2011, 1809 (09): : 470 - 475
  • [29] The Roles of SNF2/SWI2 Nucleosome Remodeling Enzymes in Blood Cell Differentiation and Leukemia
    Prasad, Punit
    Lennartsson, Andreas
    Ekwall, Karl
    BIOMED RESEARCH INTERNATIONAL, 2015, 2015
  • [30] RapA, a bacterial homolog of SWI2/SNF2, stimulates RNA polymerase recycling in transcription
    Sukhodolets, MV
    Cabrera, JE
    Zhi, HJ
    Jin, DJ
    GENES & DEVELOPMENT, 2001, 15 (24) : 3330 - 3341