Some error analysis for the quantum phase estimation algorithms

被引:0
作者
Li, Xiantao [1 ]
机构
[1] Penn State Univ, Dept Math, University Pk, PA 16802 USA
基金
美国国家科学基金会;
关键词
quantum computing; Trotter splitting methods; phase estimation algorithms; HAMILTONIAN SIMULATION;
D O I
10.1088/1751-8121/ac7f6c
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This paper is concerned with the phase estimation algorithm in quantum computing, especially the scenarios where (1) the input vector is not an eigenvector; (2) the unitary operator is approximated by Trotter or Taylor expansion methods; (3) random approximations are used for the unitary operator. We characterize the probability of computing the phase values in terms of the consistency error, including the residual error, Trotter splitting error, or statistical mean-square error. In the first two cases, we show that in order to obtain the phase value with error less or equal to 2(-n) and probability at least 1 - epsilon, the required number of qubits is t >= n + log (2 +delta(2)/2 epsilon Delta E-2). The parameter delta quantifies the error associated with the inexact eigenvector and/or the unitary operator, and Delta E characterizes the spectral gap, i.e., the separation from the rest of the phase values. This analysis generalizes the standard result (Cleve et al 1998 Phys. Rev X 11 011020; Nielsen and Chuang 2002 Quantum Computation and Quantum Information) by including these effects. More importantly, it shows that when delta < Delta E, the complexity remains the same. For the third case, we found a similar estimate, but the number of random steps has to be sufficiently large.
引用
收藏
页数:15
相关论文
共 55 条
[1]   Time-dependent unbounded Hamiltonian simulation with vector norm scaling [J].
An, Dong ;
Fang, Di ;
Lin, Lin .
QUANTUM, 2021, 5
[2]  
[Anonymous], 2014, ARXIV14031539
[3]  
[Anonymous], 2002, Scientific Computing with Ordinary Differential Equations
[4]   Encoding Electronic Spectra in Quantum Circuits with Linear T Complexity [J].
Babbush, Ryan ;
Gidney, Craig ;
Berry, Dominic W. ;
Wiebe, Nathan ;
McClean, Jarrod ;
Paler, Alexandra ;
Fowler, Austin ;
Neven, Hartmut .
PHYSICAL REVIEW X, 2018, 8 (04)
[5]   Chemical basis of Trotter-Suzuki errors in quantum chemistry simulation [J].
Babbush, Ryan ;
McClean, Jarrod ;
Wecker, Dave ;
Aspuru-Guzik, Alan ;
Wiebe, Nathan .
PHYSICAL REVIEW A, 2015, 91 (02)
[6]   Toward Quantum Computing for High-Energy Excited States in Molecular Systems: Quantum Phase Estimations of Core-Level States [J].
Bauman, Nicholas P. ;
Liu, Hongbin ;
Bylaska, Eric J. ;
Krishnamoorthy, Sriram ;
Low, Guang Hao ;
Granade, Christopher E. ;
Wiebe, Nathan ;
Baker, Nathan A. ;
Peng, Bo ;
Roetteler, Martin ;
Troyer, Matthias ;
Kowalski, Karol .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2021, 17 (01) :201-210
[7]  
Berni AA, 2015, NAT PHOTONICS, V9, P577, DOI [10.1038/nphoton.2015.139, 10.1038/NPHOTON.2015.139]
[8]   Time-dependent Hamiltonian simulation with L1-norm scaling [J].
Berry, Dominic W. ;
Childs, Andrew M. ;
Su, Yuan ;
Wang, Xin ;
Wiebe, Nathan .
QUANTUM, 2020, 4
[9]   Hamiltonian simulation with nearly optimal dependence on all parameters [J].
Berry, Dominic W. ;
Childs, Andrew M. ;
Kothari, Robin .
2015 IEEE 56TH ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, 2015, :792-809
[10]   Quantum computing methods for electronic states of the water molecule [J].
Bian, Teng ;
Murphy, Daniel ;
Xia, Rongxin ;
Daskin, Ammar ;
Kais, Sabre .
MOLECULAR PHYSICS, 2019, 117 (15-16) :2069-2082