Isoflurane mediates protection from renal ischemia-reperfusion injury via sphingosine kinase and sphingosine-1-phosphate-dependent pathways

被引:65
作者
Kim, Minjae
Kim, Mihwa
Kim, Nala
D'Agati, Vivette D.
Emala, Charles W., Sr.
Lee, H. Thomas
机构
[1] Columbia Univ, Coll Phys & Surg, Dept Anesthesiol, New York, NY USA
[2] Columbia Univ, Coll Phys & Surg, Dept Pathol, New York, NY USA
关键词
acute renal failure; inflammation; necrosis; reverse transcriptase-polymerase chain reaction; volatile anesthetics;
D O I
10.1152/ajprenal.00290.2007
中图分类号
Q4 [生理学];
学科分类号
071003 ;
摘要
The inhalational anesthetic isoflurane has been shown to protect against renal ischemia-reperfusion (IR) injury. Previous studies demonstrated that isoflurane modulates sphingolipid metabolism in renal proximal tubule cells. We sought to determine whether isoflurane stimulates sphingosine kinase (SK) activity and synthesis of sphingosine-1-phosphate (S1P) in renal proximal tubule cells to mediate renal protection via the S1P signaling pathway. Isoflurane anesthesia reduced the degree of renal failure and necrosis in a murine model of renal IR injury. This protection with isoflurane was reversed by SK inhibitors (DMS and SKI-II) as well as an S1P(1) receptor antagonist (VPC23019). In addition, mice deficient in SK1 enzyme were not protected from IR injury with isoflurane. SK activity as well as SK1 mRNA expression increased in both cultured human proximal tubule cells (HK-2) and mouse kidneys after exposure to isoflurane. Finally, isoflurane increased the generation of S1P in HK-2 cells. Taken together, our findings indicate that isoflurane activates SK in renal tubule cells and initiates S1P -> S1P(1) receptor signaling to mediate the renal protective effects. Our findings may help to unravel the cellular signaling pathways of volatile anesthetic-mediated renal protection and lead to new therapeutic applications of inhalational anesthetics during the perioperative period.
引用
收藏
页码:F1827 / F1835
页数:9
相关论文
共 58 条
[1]   Mice deficient in sphingosine kinase 1 are rendered lymphopenic by FTY720 [J].
Allende, ML ;
Sasaki, T ;
Kawai, H ;
Olivera, A ;
Mi, YD ;
van Echten-Deckert, G ;
Hajdu, R ;
Rosenbach, M ;
Keohane, CA ;
Mandala, S ;
Spiegel, S ;
Proia, RL .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (50) :52487-52492
[2]  
[Anonymous], COCHRANE DATABASE SY
[3]   How do general anaesthetics work? [J].
Antkowiak, B .
NATURWISSENSCHAFTEN, 2001, 88 (05) :201-213
[4]   Sphingosine 1-phosphate-related metabolism in the blood vessel [J].
Aoki, S ;
Yatomi, Y ;
Ohta, M ;
Osada, M ;
Kazama, F ;
Satoh, K ;
Nakahara, K ;
Ozaki, Y .
JOURNAL OF BIOCHEMISTRY, 2005, 138 (01) :47-55
[5]   Selective sphingosine 1-phosphate 1 receptor activation reduces ischemia-reperfusion injury in mouse kidney [J].
Awad, AS ;
Ye, H ;
Huang, LP ;
Li, L ;
Foss, FW ;
Macdonald, TL ;
Lynch, KR ;
Okusa, MD .
AMERICAN JOURNAL OF PHYSIOLOGY-RENAL PHYSIOLOGY, 2006, 290 (06) :F1516-F1524
[6]   Sphingosine-1-phosphate prevents tumor necrosis factor-α-mediated monocyte adhesion to aortic endothelium in mice [J].
Bolick, DT ;
Srinivasan, S ;
Kim, KW ;
Hatley, ME ;
Clemens, JJ ;
Whetzel, A ;
Ferger, N ;
Macdonald, TL ;
Davis, MD ;
Tsao, PS ;
Lynch, KR ;
Hedrick, CC .
ARTERIOSCLEROSIS THROMBOSIS AND VASCULAR BIOLOGY, 2005, 25 (05) :976-981
[7]   Ischemic acute renal failure: An inflammatory disease? [J].
Bonventre, JV ;
Zuk, A .
KIDNEY INTERNATIONAL, 2004, 66 (02) :480-485
[8]   Protein kinase C-dependent regulation of human erythroleukemia (HEL) cell sphingosine kinase activity [J].
Buehrer, BM ;
Bardes, ES ;
Bell, RM .
BIOCHIMICA ET BIOPHYSICA ACTA-LIPIDS AND LIPID METABOLISM, 1996, 1303 (03) :233-242
[9]  
Chiba K, 1998, J IMMUNOL, V160, P5037
[10]   Hypoxia induces intercellular adhesion molecule-1 on cultured human tubular cells [J].
Combe, C ;
Burton, CJ ;
Dufourcq, P ;
Weston, S ;
Horsburgh, T ;
Walls, J ;
Harris, KPG .
KIDNEY INTERNATIONAL, 1997, 51 (06) :1703-1709