Electrochemical Capacitance of Ni-Doped Metal Organic Framework and Reduced Graphene Oxide Composites: More than the Sum of Its Parts

被引:218
作者
Banerjee, Parama Chakraborty [1 ]
Lobo, Derrek E. [1 ]
Middag, Rick [1 ]
Ng, Woo Kan [1 ]
Shaibani, Mahdokht E. [1 ]
Majumder, Mainak [1 ]
机构
[1] Monash Univ, Dept Mech & Aerosp Engn, NSEL, Clayton, Vic 3800, Australia
基金
澳大利亚研究理事会;
关键词
graphene; supercapacitor; MOF; electrochemistry; NICKEL-HYDROXIDE; GAS-ADSORPTION; MOF-5; PERFORMANCE; ELECTRODE;
D O I
10.1021/am508119c
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Composites of a Ni-doped metal organic framework (MOF) with reduced graphene oxide (rGO) are synthesized in bulk (gram scale) quantities. The composites are composed of rGO sheets, which avoid restacking from the physical presence of MOF crystals. At larger concentration of rGO, the MOF crystals are distributed on the overlapping and continuous rGO sheets. Ni in Ni-doped MOF is found to engage in a two-electron, reversible, efficient, redox reaction shuttling between Ni and Ni(OH)(2) in aqueous potassium hydroxide (KOH) electrolyte. The reaction is rather unique as Ni-based supercapacitors use a one-electron transfer Faradaic redox reaction between Ni(OH)(2) and NiO(OH). Employing electrochemical impedance spectroscopy, we determined the charge transfer resistance to be 184 m Omega for MOF, 74 m Omega for a Ni-doped MOF and 6 m Omega for a rGONi-doped MOF composite, but these modifications do not affect the mass transfer resistance. This novel redox reaction in conjunction with the lowered charge transfer resistance from the introduction of rGO underpins the synergy that dramatically increases the capacitance to 758 F/g in the rGONi-doped MOF composite, when the parent MOF could store only 100 F/g and a physical composite of rGO and Ni-doped MOF could algebraically achieve about 240 F/g. A generic approach of doping MOFs with a redox active metal and forming a composite with rGO transforms an electro-inactive MOF to high capacity energy storage material with energy density of 37.8 Wh/kg at a power density of 227 W/kg. These results can promote the development of high-performance energy storage materials from the wide family of MOFs available.
引用
收藏
页码:3655 / 3664
页数:10
相关论文
共 54 条
  • [1] [Anonymous], NAT COMMUN, DOI DOI 10.1038/NCOMMS2680
  • [2] Pseudocapacitive oxide materials for high-rate electrochemical energy storage
    Augustyn, Veronica
    Simon, Patrice
    Dunn, Bruce
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (05) : 1597 - 1614
  • [3] Bard AJ, 2001, ELECTROCHEMICAL METH
  • [4] Electronic and vibrational properties of a MOF-5 metal-organic framework: ZnO quantum dot behaviour
    Bordiga, S
    Lamberti, C
    Ricchiardi, G
    Regli, L
    Bonino, F
    Damin, A
    Lillerud, KP
    Bjorgen, M
    Zecchina, A
    [J]. CHEMICAL COMMUNICATIONS, 2004, (20) : 2300 - 2301
  • [5] Cobalt Doping of the MOF-5 Framework and Its Effect on Gas-Adsorption Properties
    Botas, Juan A.
    Calleja, Guillermo
    Sanchez-Sanchez, Manuel
    Gisela Orcajo, M.
    [J]. LANGMUIR, 2010, 26 (08) : 5300 - 5303
  • [6] Supercapacitors of Nanocrystalline Metal-Organic Frameworks
    Choi, Kyung Min
    Jeong, Hyung Mo
    Park, Jung Hyo
    Zhang, Yue-Biao
    Kang, Jeung Ku
    Yaghi, Omar M.
    [J]. ACS NANO, 2014, 8 (07) : 7451 - 7457
  • [7] Conway B.E., 1999, ELECTROCHEM SUPERCAP, DOI DOI 10.1007/978-1-4757-3058-6
  • [8] Engineering Metal Organic Frameworks for Heterogeneous Catalysis
    Corma, A.
    Garcia, H.
    Llabres i Xamena, F. X. L. I.
    [J]. CHEMICAL REVIEWS, 2010, 110 (08) : 4606 - 4655
  • [9] Industrial applications of metal-organic frameworks
    Czaja, Alexander U.
    Trukhan, Natalia
    Mueller, Ulrich
    [J]. CHEMICAL SOCIETY REVIEWS, 2009, 38 (05) : 1284 - 1293
  • [10] Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor
    Das, A.
    Pisana, S.
    Chakraborty, B.
    Piscanec, S.
    Saha, S. K.
    Waghmare, U. V.
    Novoselov, K. S.
    Krishnamurthy, H. R.
    Geim, A. K.
    Ferrari, A. C.
    Sood, A. K.
    [J]. NATURE NANOTECHNOLOGY, 2008, 3 (04) : 210 - 215