COUNTING IRREDUCIBLE POLYNOMIALS OVER FINITE FIELDS

被引:1
作者
Wang, Qichun [1 ]
Kan, Haibin [1 ]
机构
[1] Fudan Univ, Sch Comp Sci, Shanghai Key Lab Intelligent Informat Proc, Shanghai 200433, Peoples R China
关键词
finite fields; distribution of irreducible polynomials; residue;
D O I
10.1007/s10587-010-0055-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we generalize the method used to prove the Prime Number Theorem to deal with finite fields, and prove the following theorem: pi(x) = q/q-1 x/log(q)x + q/(q-1)(2) x/log(q)(2)x + O(x/log(q)(3)x), x = q(n) -> infinity where pi(x) denotes the number of monic irreducible polynomials in F(q)[t] with norm <= x.
引用
收藏
页码:881 / 886
页数:6
相关论文
共 2 条
[1]  
Davenport H, 1980, Multiplicative number theory, V2nd
[2]   ANALOG FOR THE PRIME NUMBER EQUATION FOR ALGEBRAIC FUNCTION-FIELDS [J].
KRUSE, M ;
STICHTENOTH, H .
MANUSCRIPTA MATHEMATICA, 1990, 69 (03) :219-221