Rational homotopy of Leibniz algebras

被引:25
作者
Livernet, M
机构
[1] Univ Strasbourg 1, Inst Rech Math Avancee, F-67084 Strasbourg, France
[2] CNRS, F-67084 Strasbourg, France
关键词
Mathematics Subject Classification (1991):55P62, 17A30, 18Gxx;
D O I
10.1007/s002290050069
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct a non-commutative rational homotopy theory by replacing the pail: (Lie algebras, commutative algebras) by the pair (Leibniz algebras, Leibniz-dual algebras). Both pairs are Koszul dual in the sense of operads (Ginzburg-Kapranov). We prove the existence of minimal models and the Hurewicz theorem in this framework. We define Leibniz spheres and prove that their homotopy is periodic.
引用
收藏
页码:295 / 315
页数:21
相关论文
共 18 条
[1]  
BALAVOINE D, 1997, THESIS U MONTPELLIER
[2]   MINIMAL MODELS IN HOMOTOPY THEORY [J].
BAUES, HJ ;
LEMAIRE, JM .
MATHEMATISCHE ANNALEN, 1977, 225 (03) :219-242
[3]  
Bousfield A.K., 1976, MEM AMS, V179
[4]  
Felix Y, 1995, Handbook of algebraic topology, P829
[5]  
FELIX Y, 1981, B SOC MATH BELG, V23, P7
[6]   KOSZUL DUALITY FOR OPERADS [J].
GINZBURG, V ;
KAPRANOV, M .
DUKE MATHEMATICAL JOURNAL, 1994, 76 (01) :203-272
[7]  
Griffiths P.A., 1981, PROGR MATH, V16
[8]  
Loday J.-L., 1993, ENSEIGN MATH, V39, P269
[9]   UNIVERSAL ENVELOPING-ALGEBRAS OF LEIBNIZ ALGEBRAS AND (CO)HOMOLOGY [J].
LODAY, JL ;
PIRASHVILI, T .
MATHEMATISCHE ANNALEN, 1993, 296 (01) :139-158
[10]   Cup-product for Leibniz cohomology and dual Leibniz algebras [J].
Loday, JL .
MATHEMATICA SCANDINAVICA, 1995, 77 (02) :189-196