Bi-Lyapunov Stable Homoclinic Classes for C1 Generic Flows

被引:0
作者
Zheng, Ru Song [1 ]
机构
[1] Southern Univ Sci & Technol, Sch Innovat & Entrepreneurship, Shenzhen 518055, Peoples R China
关键词
Bi-Lyapunov stable; homoclinic class; singularity; dominated splitting; linear cocycle; PERIODIC-ORBITS; SETS; HYPERBOLICITY;
D O I
10.1007/s10114-021-0420-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study bi-Lyapunov stable homoclinic classes for a C-1 generic flow on a closed Riemannian manifold and prove that such a homoclinic class contains no singularity. This enables a parallel study of bi-Lyapunov stable dynamics for flows and for diffeomorphisms. For example, we can then show that a bi-Lyapunov stable homoclinic class for a C-1 generic flow is hyperbolic if and only if all periodic orbits in the class have the same stable index.
引用
收藏
页码:1023 / 1040
页数:18
相关论文
共 20 条
[1]   Periodic points and homoclinic classes [J].
Abdenur, F. ;
Bonatti, Ch. ;
Crovisier, S. ;
Diaz, L. J. ;
Wen, L. .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2007, 27 :1-22
[2]   Non-wandering sets with non-empty interiors [J].
Abdenur, F ;
Bonatti, C ;
Díaz, LJ .
NONLINEARITY, 2004, 17 (01) :175-191
[3]   On bi-Lyapunov stable homoclinic classes [J].
Arbieto, A. ;
Carvalho, B. ;
Cordeiro, W. ;
Obata, D. J. .
BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2013, 44 (01) :105-127
[4]   Creating connections in topology C1 [J].
Arnaud, MC .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2001, 21 :339-381
[5]   Perturbation of the Lyapunov spectra of periodic orbits [J].
Bochi, J. ;
Bonatti, C. .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2012, 105 :1-48
[6]   Recurrence and genericty [J].
Bonatti, C ;
Crovisier, S .
INVENTIONES MATHEMATICAE, 2004, 158 (01) :33-104
[7]   A C1-generic dichotomy for diffeomorphisms:: Weak forms of hyperbolicity or infinitely many sinks or sources [J].
Bonatti, C ;
Díaz, LJ ;
Pujals, ER .
ANNALS OF MATHEMATICS, 2003, 158 (02) :355-418
[8]   Perturbations of the derivative along periodic orbits [J].
Bonatti, Christian ;
Gourmelon, Nikolas ;
Vivier, Therese .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2006, 26 :1307-1337
[9]  
Conley Ch., 1978, Isolated invariant sets and the Morse index, CBMS Publ, DOI [10.1090/cbms/038, DOI 10.1090/CBMS/038]
[10]  
Crovisier S., 2017, ARXIV170205994V2