Sparse Bayesian Learning Using Generalized Double Pareto Prior for DOA Estimation

被引:41
作者
Wang, Qisen [1 ,2 ]
Yu, Hua [1 ,2 ]
Li, Jie [3 ]
Ji, Fei [3 ]
Chen, Fangjiong [3 ]
机构
[1] South China Univ Technol, Sch Civil Engn & Transportat, Guangzhou 510640, Peoples R China
[2] Minist Nat Resources, Key Lab Marine Environm Survey Technol & Applicat, Guangzhou 510300, Peoples R China
[3] South China Univ Technol, Sch Elect & Informat Engn, Guangzhou 510640, Peoples R China
基金
中国国家自然科学基金;
关键词
Economic indicators; Estimation; Direction-of-arrival estimation; Bayes methods; Convergence; Signal processing algorithms; Sensor arrays; Direction of arrival; generalized double Pareto prior; complex signals; sparse Bayesian learning; OF-ARRIVAL ESTIMATION; SIGNAL RECONSTRUCTION;
D O I
10.1109/LSP.2021.3104503
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this letter, we propose a novel sparse Bayesian learning (SBL) algorithm using Generalized Double Pareto (GDP) prior to enhance the performance of direction of arrival (DOA) estimation for complex signals. Firstly, a novel hierarchical prior model is formulated for complex signals so that the marginal distribution of the complex signal is the GDP distribution, which promotes the sparsity more significantly than conventional priors used in SBL. Secondly, a novel fixed-point update rule of the hyperparameters is derived to speed up the convergence of the proposed SBL. Finally, a refined DOA searching method is also derived to tackle the grid-mismatch problem. Simulation results demonstrate the improved accuracy and efficiency of the proposed algorithm in low SNR and limited snapshots scenarios compared with other SBL-based DOA estimation methods.
引用
收藏
页码:1744 / 1748
页数:5
相关论文
共 18 条
[1]   GENERALIZED DOUBLE PARETO SHRINKAGE [J].
Armagan, Artin ;
Dunson, David B. ;
Lee, Jaeyong .
STATISTICA SINICA, 2013, 23 (01) :119-143
[2]   Bayesian Group-Sparse Modeling and Variational Inference [J].
Babacan, S. Derin ;
Nakajima, Shinichi ;
Do, Minh N. .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2014, 62 (11) :2906-2921
[3]   Bayesian Compressive Sensing Using Laplace Priors [J].
Babacan, S. Derin ;
Molina, Rafael ;
Katsaggelos, Aggelos K. .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2010, 19 (01) :53-63
[4]   Root Sparse Bayesian Learning for Off-Grid DOA Estimation [J].
Dai, Jisheng ;
Bao, Xu ;
Xu, Weichao ;
Chang, Chunqi .
IEEE SIGNAL PROCESSING LETTERS, 2017, 24 (01) :46-50
[5]   MAXIMUM LIKELIHOOD FROM INCOMPLETE DATA VIA EM ALGORITHM [J].
DEMPSTER, AP ;
LAIRD, NM ;
RUBIN, DB .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1977, 39 (01) :1-38
[6]   Multisnapshot Sparse Bayesian Learning for DOA [J].
Gerstoft, Peter ;
Mecklenbrauker, Christoph F. ;
Xenaki, Angeliki ;
Nannuru, Santosh .
IEEE SIGNAL PROCESSING LETTERS, 2016, 23 (10) :1469-1473
[7]   Type I and Type II Bayesian Methods for Sparse Signal Recovery Using Scale Mixtures [J].
Giri, Ritwik ;
Rao, Bhaskar .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2016, 64 (13) :3418-3428
[8]   Sparse signal reconstruction from limited data using FOCUSS: A re-weighted minimum norm algorithm [J].
Gorodnitsky, IF ;
Rao, BD .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1997, 45 (03) :600-616
[9]   Two decades of array signal processing research - The parametric approach [J].
Krim, H ;
Viberg, M .
IEEE SIGNAL PROCESSING MAGAZINE, 1996, 13 (04) :67-94
[10]   An Efficient Maximum Likelihood Method for Direction-of-Arrival Estimation via Sparse Bayesian Learning [J].
Liu, Zhang-Meng ;
Huang, Zhi-Tao ;
Zhou, Yi-Yu .
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2012, 11 (10) :3607-3617