Primes, elliptic curves and cyclic groups

被引:3
作者
Cojocaru, Alina Carmen [1 ,2 ]
机构
[1] Univ Illinois, Dept Math Stat & Comp Sci, 851 S Morgan St,322 SEO, Chicago, IL 60607 USA
[2] Romanian Acad, Inst Math Simion Stoilow, 21 Calea Grivitei St,Sect 1, Bucharest 010702, Romania
来源
ANALYTIC METHODS IN ARITHMETIC GEOMETRY | 2019年 / 740卷
基金
美国国家科学基金会;
关键词
SATO-TATE; MODULO-P; FINITE-ORDER; POINTS; REDUCTIONS; AVERAGE; NUMBER; STATISTICS; DIVISOR; INVARIANTS;
D O I
10.1090/conm/740/14901
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given an elliptic curve defined over the field of rational numbers, what is the frequency with which its reduction modulo a prime gives rise to a cyclic group? Guided by this question, we survey results (and their methods of proof) about rational primes viewed in the context of elliptic curves.
引用
收藏
页码:1 / 69
页数:69
相关论文
共 112 条
[1]  
AKBARY A., 2008, J RAMANUJAN MATH SOC, V23, P259
[2]   On invariants of elliptic curves on average [J].
Akbary, Amir ;
Felix, Adam Tyler .
ACTA ARITHMETICA, 2015, 168 (01) :31-70
[3]   A GEOMETRIC VARIANT OF TITCHMARSH DIVISOR PROBLEM [J].
Akbary, Amir ;
Ghioca, Dragos .
INTERNATIONAL JOURNAL OF NUMBER THEORY, 2012, 8 (01) :53-69
[4]   AN ANALOGUE OF THE SIEGEL-WALFISZ THEOREM FOR THE CYCLICITY OF CM ELLIPTIC CURVES MOD p [J].
Akbary, Amir ;
Murty, V. Kumar .
INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2010, 41 (01) :25-37
[5]  
Ali Miri S., 2001, International Conference on Cryptology in India, P91
[6]  
[Anonymous], 2000, GRADUATE TEXTS MATH
[7]  
[Anonymous], 2008, CURRENT DEV MATH 200
[8]  
[Anonymous], 1976, UNDERGRADUATE TEXTS
[9]  
[Anonymous], 2006, The millennium prize problems
[10]  
BAIER S, 2007, J RAMANUJAN MATH SOC, V22, P299