A robust and reliable grid power interface system for wind turbines using a permanent-magnet synchronous generator (PMSG) is proposed in this paper, where an integration of a generator-side three-switch buck-type rectifier and a grid-side Z-source inverter is employed as a bridge between the generator and the grid. The modulation strategy for the proposed topology is developed from space-vector modulation and Z-source network operation principles. Two PMSG control methods, namely, unity-power-factor control and rotor-flux-orientation control (I-d = 0), are studied to establish an optimized control scheme for the generator-side three-switch buck-type rectifier. The system control scheme decouples active-and reactive-power control through voltage-oriented control and optimizes PMSG control for the grid-and generator-side converters independently. Maximum power point tracking is implemented by adjusting the shoot-through duty cycles of the Z-source network. The design considerations of the passive components are also provided. The performances and practicalities of the designed architecture have been verified by simulations and experiments.
引用
收藏
页码:316 / 328
页数:13
相关论文
共 25 条
[1]
Amei K, 2002, PCC-OSAKA 2002: PROCEEDINGS OF THE POWER CONVERSION CONFERENCE-OSAKA 2002, VOLS I - III, P1447, DOI 10.1109/PCC.2002.998186