Thom isomorphisms in triangulated motivic categories

被引:0
作者
Ananyevskiy, Alexey [1 ]
机构
[1] PDMI RAS, St Petersburg Dept, Steklov Math Inst, St Petersburg, Russia
来源
ALGEBRAIC AND GEOMETRIC TOPOLOGY | 2021年 / 21卷 / 04期
基金
俄罗斯基础研究基金会;
关键词
ETALE REALIZATION; A(1)-HOMOTOPY THEORY; MODULES;
D O I
10.2140/agt.2021.21.2085
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that a triangulated motivic category admits categorical Thom isomorphisms for vector bundles with an additional structure if and only if the generalized motivic cohomology theory represented by the tensor unit object admits Thom classes. We also show that the stable A(1)-derived category does not admit Thom isomorphisms for oriented vector bundles and, more generally, for symplectic bundles. In order to do so we compute the first homology sheaves of the motivic sphere spectrum and show that the class in the coefficient ring of A(1)-homology corresponding to the second motivic Hopf map nu is nonzero, which provides an obstruction to the existence of a reasonable theory of Thom classes in A(1)-cohomology.
引用
收藏
页码:2085 / 2106
页数:22
相关论文
共 22 条
  • [1] SL-oriented cohomology theories
    Ananyevskiy, Alexey
    [J]. MOTIVIC HOMOTOPY THEORY AND REFINED ENUMERATIVE GEOMETRY, 2020, 745 : 1 - 19
  • [2] [Anonymous], 2004, ICTP Lect. Notes, Abdus Salam Int. Cent. Theoret. Phys.
  • [3] Motivic spheres and the image of the Suslin-Hurewicz map
    Asok, Aravind
    Fasel, Jean
    Williams, Ben
    [J]. INVENTIONES MATHEMATICAE, 2020, 219 (01) : 39 - 73
  • [4] Ayoub J, 2014, ANN SCI ECOLE NORM S, V47, P1
  • [5] Bachmann T., 2017, ASTERISQUE
  • [6] Bachmann T, 2020, MILNOR WITT MOTIVES
  • [7] Cisinski D.-C., 2019, TRIANGULATED CATEGOR
  • [8] Cohomological correspondence categories
    Druzhinin, Andrei
    Kolderup, Hakon
    [J]. ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2020, 20 (03): : 1487 - 1541
  • [9] Dugger D, 2013, NEW YORK J MATH, V19, P823
  • [10] On modules over motivic ring spectra
    Elmanto, Elden
    Kolderup, Hakon
    [J]. ANNALS OF K-THEORY, 2020, 5 (02) : 327 - 355