Hybrid Learning Algorithm Based Neural Networks for Short-term Load Forecasting
被引:0
作者:
Kuo, Shyi-Shiun
论文数: 0引用数: 0
h-index: 0
机构:
Nan Kai Univ Technol, Dept Multimedia Animat & Applicat, Nantou 542, TaiwanNan Kai Univ Technol, Dept Multimedia Animat & Applicat, Nantou 542, Taiwan
Kuo, Shyi-Shiun
[1
]
Lee, Cheng-Ming
论文数: 0引用数: 0
h-index: 0
机构:
Nan Kai Univ Technol, Dept Digital Living Innovat, Nantou 542, TaiwanNan Kai Univ Technol, Dept Multimedia Animat & Applicat, Nantou 542, Taiwan
Lee, Cheng-Ming
[2
]
Ko, Chia-Nan
论文数: 0引用数: 0
h-index: 0
机构:
Nan Kai Univ Technol, Dept Automat Engn, Nantou 542, TaiwanNan Kai Univ Technol, Dept Multimedia Animat & Applicat, Nantou 542, Taiwan
Ko, Chia-Nan
[3
]
机构:
[1] Nan Kai Univ Technol, Dept Multimedia Animat & Applicat, Nantou 542, Taiwan
[2] Nan Kai Univ Technol, Dept Digital Living Innovat, Nantou 542, Taiwan
[3] Nan Kai Univ Technol, Dept Automat Engn, Nantou 542, Taiwan
来源:
2014 INTERNATIONAL CONFERENCE ON FUZZY THEORY AND ITS APPLICATIONS (IFUZZY2014)
|
2014年
关键词:
support vector regression;
radial basis function neural network;
annealing robust time-varying learning algorithm;
short-term load forecasting;
SUPPORT VECTOR REGRESSION;
PARTICLE SWARM;
COMBINATION;
D O I:
暂无
中图分类号:
TP18 [人工智能理论];
学科分类号:
081104 ;
0812 ;
0835 ;
1405 ;
摘要:
This paper proposes a hybrid algorithm to improve the accuracy of short-term load forecasting (STLF). In the hybrid algorithm, first, support vector regression (SVR) is used to determine the initial structure of RBFNNs (SVR-RBFNNs); then, an annealing robust concept with time-varying learning algorithm (ARTVLA) is then applied to train the SVR-RBFNNs (ARTVLA-SVR-RBFNNs). In ARTVLA, we adopt a particle swarm optimization (PSO) method to find a set of promising rates to overcome the problem for the trade-off between stability and speed of convergence in training procedure of RBFNNs. Finally, the optimal RBFNNs are applied to predict short-term load demands. The performance of the proposed approach is evaluated on the hourly empirical load data of the Taiwan power Company (TPC) in the case for 24-hour-ahead prediction. Simulation results show that the proposed ARTVLA-SVR-RBFNNs yield more accurate load forecasting than the SVR-RBFNNs based on annealing robust learning algorithm (ARLASVR-RBFNNs) with fixed learning rates.
机构:
Nanchang Inst Technol, Dept Sci, Nanchang 330099, Jiangxi, Peoples R ChinaNanchang Inst Technol, Dept Sci, Nanchang 330099, Jiangxi, Peoples R China
Che, Jinxing
;
Wang, Jianzhou
论文数: 0引用数: 0
h-index: 0
机构:
Lanzhou Univ, Sch Math & Stat, Lanzhou 730000, Gansu, Peoples R ChinaNanchang Inst Technol, Dept Sci, Nanchang 330099, Jiangxi, Peoples R China
Wang, Jianzhou
;
Wang, Guangfu
论文数: 0引用数: 0
h-index: 0
机构:
E China Jiaotong Univ, Sch Basic Sci, Nanchang 330013, Jiangxi, Peoples R China
Baoshan Coll, Dept Math, Baoshan 678000, Yunnan, Peoples R ChinaNanchang Inst Technol, Dept Sci, Nanchang 330099, Jiangxi, Peoples R China
机构:
Nanchang Inst Technol, Dept Sci, Nanchang 330099, Jiangxi, Peoples R ChinaNanchang Inst Technol, Dept Sci, Nanchang 330099, Jiangxi, Peoples R China
Che, Jinxing
;
Wang, Jianzhou
论文数: 0引用数: 0
h-index: 0
机构:
Lanzhou Univ, Sch Math & Stat, Lanzhou 730000, Gansu, Peoples R ChinaNanchang Inst Technol, Dept Sci, Nanchang 330099, Jiangxi, Peoples R China
Wang, Jianzhou
;
Wang, Guangfu
论文数: 0引用数: 0
h-index: 0
机构:
E China Jiaotong Univ, Sch Basic Sci, Nanchang 330013, Jiangxi, Peoples R China
Baoshan Coll, Dept Math, Baoshan 678000, Yunnan, Peoples R ChinaNanchang Inst Technol, Dept Sci, Nanchang 330099, Jiangxi, Peoples R China