Building damage detection based on multi-source adversarial domain adaptation

被引:3
|
作者
Wang, Xiang [1 ]
Li, Yundong [1 ]
Lin, Chen [1 ]
Liu, Yi [1 ]
Geng, Shuo [1 ]
机构
[1] North China Univ Technol Informat Sci & Technol, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
remote sensing imagery; building damage detection; domain adaptation; multi-source domain; adapted source domain; transfer learning;
D O I
10.1117/1.JRS.15.036503
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Building damage assessment plays an essential role during post-disaster rescue operations. Given that labeled samples are difficult to timely obtain after a disaster, transfer learning attracts increasing attention. However, different sensors employed cause considerable discrepancies not only between historical and current scenes but also among historical scenes, which could exert an effect on transfer performance. Therefore, a multi-source adversarial domain adaptation (MADA) method is proposed in this paper to fulfill the task of post-disaster building assessment. This method consists of two phases. First, imageries of several historical scenes are transformed into the same style of the current scene through the CycleGAN model with a classifier, ensuring class invariance, to be fused to make an adapted source domain. Second, feature alignment between adapted source and target domains is executed based on adversarial discriminative domain adaptation. The MADA method enhances the transformed image quality, fully utilizes relevant information in historical scenes, solves inter-scene interference problems among historical images, and improves the transfer efficiency from historical to the current disaster scene. Two experiments are conducted with Hurricane Sandy, Irma, and Maria datasets as multi-source and target domains to validate MADA's effectiveness. Results show that the classification performance is better than other methods. (c) 2021 Society of Photo-Optical Instrumentation Engineers (SPIE)
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Post-disaster building damage detection using multi-source variational domain adaptation
    Li, Yundong
    Yan, Yunlong
    Wang, Xiang
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2024, 46 (01) : 389 - 404
  • [2] A survey of multi-source domain adaptation
    Sun, Shiliang
    Shi, Honglei
    Wu, Yuanbin
    INFORMATION FUSION, 2015, 24 : 84 - 92
  • [3] Adversarial learning-based domain adaptation algorithm for intracranial artery stenosis detection on multi-source datasets
    Gao, Yuan
    Ma, Chenbin
    Guo, Lishuang
    Liu, Guiyou
    Zhang, Xuxiang
    Ji, Xunming
    COMPUTERS IN BIOLOGY AND MEDICINE, 2024, 170
  • [4] A multi-source transfer learning model based on LSTM and domain adaptation for building energy prediction
    Lu, Huiming
    Wu, Jiazheng
    Ruan, Yingjun
    Qian, Fanyue
    Meng, Hua
    Gao, Yuan
    Xu, Tingting
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2023, 149
  • [5] CALDA: Improving Multi-Source Time Series Domain Adaptation With Contrastive Adversarial Learning
    Wilson, Garrett
    Doppa, Janardhan Rao
    Cook, Diane J.
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (12) : 14208 - 14221
  • [6] On the analysis of adaptability in multi-source domain adaptation
    Redko, Ievgen
    Habrard, Amaury
    Sebban, Marc
    MACHINE LEARNING, 2019, 108 (8-9) : 1635 - 1652
  • [7] Multi-Source Contribution Learning for Domain Adaptation
    Li, Keqiuyin
    Lu, Jie
    Zuo, Hua
    Zhang, Guangquan
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2022, 33 (10) : 5293 - 5307
  • [8] On the analysis of adaptability in multi-source domain adaptation
    Ievgen Redko
    Amaury Habrard
    Marc Sebban
    Machine Learning, 2019, 108 : 1635 - 1652
  • [9] Multi-source Open-Set Image Classification Based on Deep Adversarial Domain Adaptation
    Zhang, Haitao
    Liu, Xinran
    Han, Qilong
    Lu, Dan
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING, ICANN 2023, PT V, 2023, 14258 : 143 - 156
  • [10] Automatic online multi-source domain adaptation
    Renchunzi, Xie
    Pratama, Mahardhika
    INFORMATION SCIENCES, 2022, 582 : 480 - 494