On a Littlewood-Paley type inequality

被引:4
作者
Djordjevic, Olivera
Pavlovic, Miroslav
机构
[1] Fak Org Nauka, Belgrade, Serbia
[2] Matemat Fak, Belgrade, Serbia
关键词
Littlewood-Paley inequalities; harmonic functions in R-N;
D O I
10.1090/S0002-9939-07-09016-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The following is proved: If u is a function harmonic in the unit ball B subset of R-N and if 0 < p <= 1, then the inequality integral(partial derivative B) u*( y)(p) d sigma <= C-p,C-N (vertical bar u( 0)|(p) + integral(B) ( 1 -vertical bar x vertical bar)(p-1) vertical bar del u( x)vertical bar p dV (x)) holds, where u* is the nontangential maximal function of u. This improves a recent result of Stoll. This inequality holds for polyharmonic and hyperbolically harmonic functions as well.
引用
收藏
页码:3607 / 3611
页数:5
相关论文
共 18 条
[1]  
[Anonymous], 1994, PUBLICATIONS LINSTIT
[2]  
[Anonymous], 1936, P LOND MATH SOC, DOI 10.1112/plms/s2-42.1.52
[3]  
FEFFERMAN C, 1972, ACTA MATH-UPPSALA, V129, P137, DOI 10.1007/BF02392215
[4]   MEAN VALUES OF POWER SERIES [J].
FLETT, TM .
PACIFIC JOURNAL OF MATHEMATICS, 1968, 25 (03) :463-&
[5]  
GARNETT JB, 1981, BOUNDED ALAL FUNCTIO, V96
[6]  
Hardy GH, 1932, J REINE ANGEW MATH, V167, P405
[7]  
JECTIC M, 1993, ARCH MATH, V61, P367
[8]  
Jevtic M, 1999, INDIAN J PURE AP MAT, V30, P407
[9]   A NEW PROOF OF AN INEQUALITY OF LITTLEWOOD AND PALEY [J].
LUECKING, DH .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1988, 103 (03) :887-893
[10]   INEQUALITIES FOR THE GRADIENT OF EIGENFUNCTIONS OF THE INVARIANT LAPLACIAN IN THE UNIT BALL [J].
PAVLOVIC, M .
INDAGATIONES MATHEMATICAE-NEW SERIES, 1991, 2 (01) :89-98