Computation of optimal break point set of relays-an integer linear programming approach

被引:13
作者
Gajbhiye, Rajeev Kumar [1 ]
De, Anindya
Soman, S. A.
机构
[1] Indian Inst Technol, Bombay 400076, Maharashtra, India
[2] Indian Inst Technol, Kanpur 208016, Uttar Pradesh, India
关键词
greedy algorithms; integer linear programming; minimum break point set (MBPS); NP-complete problem;
D O I
10.1109/TPWRD.2007.905539
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We propose an integer linear programming (ILP) formulation for the minimum relay break point set (BPS) computation. Subsequently, in the ILP framework, we propose an alternate maximum-independent relay BPS formulation with the intention of minimizing dependency within the BPS. We show that 1) in practice, the relaxed version of the ILP suffices to obtain an integral vertex and 2) the relaxed version of the ILP can be efficiently solved by the dual-simplex method. The performance of the proposed algorithm is compared and contrasted with existing algorithms. Case studies on various test systems show the efficacy of the proposed approach.
引用
收藏
页码:2087 / 2098
页数:12
相关论文
共 23 条
  • [1] Damborg M. J., 1984, IEEE T POWER APPARAT, VPAS-103, P60
  • [2] COMPUTER-AIDED TRANSMISSION PROTECTION SYSTEM-DESIGN .1. ALGORITHMS
    DAMBORG, MJ
    RAMASWAMI, R
    VENKATA, SS
    POSTFOROOSH, JM
    [J]. IEEE TRANSACTIONS ON POWER APPARATUS AND SYSTEMS, 1984, 103 (01): : 51 - 59
  • [3] DAMBORG MJ, 1984, EL337 U WASH DEPT EL
  • [4] DAMBORG MJ, 1986, IEEE T POWER DELIVER, V1, P280
  • [5] Dantzig G. B., 1997, LINEAR PROGRAMMING 1
  • [6] Dwarakanath M, 1980, P EL POW PROBL MATH, P104
  • [7] Gajbhiye RK, 2005, P INT C FUT POW SYST, P1
  • [8] Garey MR, 1979, Computers and Intractablity: A Guide to the Theoryof NP-Completeness
  • [9] Harary F., 1995, GRAPH THEORY
  • [10] Jamali S., 2004, P INT C POW SYST TEC, V2, P1857