Effect of long-term fertilization on soil microbial activities and metabolism in Paulownia plantations

被引:8
|
作者
Liu, Sen [1 ]
Li, Peng [2 ]
Gan, Weixiang [1 ]
Fu, Yujia [3 ]
Weng, Yilin [1 ]
Tu, Jia [4 ]
Lu, Sheng [1 ]
Wu, Lichao [1 ,3 ]
机构
[1] Cent South Univ Forestry & Technol, Coll Forestry, Key Lab Soil & Water Conservat & Desertificat Com, Changsha, Peoples R China
[2] Guangxi Zhuang Autonomous Reg Forestry Res Inst, Nanning, Peoples R China
[3] Cent South Univ Forestry & Technol, Key Lab Cultivat & Protect Nonwood Forest Trees, Minist Educ, Changsha, Peoples R China
[4] Hunan Acad Forestry, Changsha, Peoples R China
关键词
enzyme activity; fertilization; microbial biomass; microbial metabolism; Paulownia; redundancy analysis; COMMUNITY STRUCTURE; QUALITY ASSESSMENT; ORGANIC-MATTER; NITROGEN; BIOMASS; PHOSPHORUS; MANURE; WATER; IRRIGATION; MANAGEMENT;
D O I
10.1111/sum.12742
中图分类号
S15 [土壤学];
学科分类号
0903 ; 090301 ;
摘要
Paulownia is a well-known, fast-growing tree genus that is widely planted for commercial cultivation in the warm temperate zone of the North China Plain. Fertilization as a standard practice can efficiently increase wood production and tree yield in those Paulownia plantations, but how different fertilization measures might affect soil microbial activity, microbial biomass and metabolic functioning unclear, especially in the subtropics. To fill this knowledge gap, we initiated long-term different fertilization experiments from afforestation, using a completely randomized block design consisting of a control, inorganic fertilizer, microelement-inorganic fertilizer and organic-inorganic compound fertilizer (OIF) treatments in South China's subtropical zone. The results revealed fertilization significantly increased soil enzyme activity and microbial biomass, especially that of urease, invertase, acid phosphatase, as well as the microbial biomass in terms of carbon and nitrogen, all of which increased most significantly in soil under the OIF treatment. The carbon source utilization levels of five carbon substrates under the OIF treatment, namely D-xylose, glucose-1-phosphate, D-cellobiose, alpha-ketobutyric acid and glycogen, were significantly higher than those of the others. From these data, we may reasonably infer that the application of organic fertilizer could offer an effective management practice for use in Paulownia plantations. The five carbon matrices may be the most efficient carbon sources for increasing the abundance of efficient soil microorganisms, improving soil fertility and achieving the sustainable development of Paulownia plantations.
引用
收藏
页码:978 / 990
页数:13
相关论文
共 50 条
  • [1] Soil bacterial community responses to long-term fertilizer treatments in Paulownia plantations in subtropical China
    Tu, Jia
    Qiao, Jie
    Zhu, Zhiwen
    Li, Peng
    Wu, Lichao
    APPLIED SOIL ECOLOGY, 2018, 124 : 317 - 326
  • [2] Long-term effects of nitrogen fertilization on aggregation and localization of carbon, nitrogen and microbial activities in soil
    Wang, Yidong
    Wang, Zhong-Liang
    Zhang, Qingzhong
    Hu, Ning
    Li, Zhongfang
    Lou, Yilai
    Li, Yong
    Xue, Dongmei
    Chen, Yi
    Wu, Chunyan
    Zou, Chris B.
    Kuzyakov, Yakov
    SCIENCE OF THE TOTAL ENVIRONMENT, 2018, 624 : 1131 - 1139
  • [3] RESPONSE OF SOIL MICROBIAL DIVERSITY TO DIFFERENT LONG-TERM FERTILIZATION
    Kracmarova, Martina
    Stiborova, Hana
    Uhlik, Ondrej
    Strejcek, Michal
    Demnerova, Katerina
    BIOBIO 2017: 6TH INTERNATIONAL SYMPOSIUM ON BIOSORPTION AND BIODEGRADATION/BIOREMEDIATION, 2017, : 26 - 29
  • [4] Effect of long-term fertilization on the strontium content of soil
    Nemeth, Tamas
    Kiss, Zsanett
    Kismanyoky, Tamas
    Lehoczky, Eva
    COMMUNICATIONS IN SOIL SCIENCE AND PLANT ANALYSIS, 2006, 37 (15-20) : 2751 - 2758
  • [5] Effect of long-term fertilization on soil nitrate distribution
    Guo, LP
    Zhang, FS
    Wang, XR
    Mao, DR
    Chen, XP
    JOURNAL OF ENVIRONMENTAL SCIENCES, 2001, 13 (01) : 58 - 63
  • [6] Effect of long-term fertilization on soil nitrate distribution
    GUO Li ping *
    Journal of Environmental Sciences, 2001, (01) : 58 - 63
  • [7] Microbial metabolism and necromass mediated fertilization effect on soil organic carbon after long-term community incubation in different climates
    Haowei Ni
    Xiaoyan Jing
    Xian Xiao
    Na Zhang
    Xiaoyue Wang
    Yueyu Sui
    Bo Sun
    Yuting Liang
    The ISME Journal, 2021, 15 : 2561 - 2573
  • [8] Microbial metabolism and necromass mediated fertilization effect on soil organic carbon after long-term community incubation in different climates
    Ni, Haowei
    Jing, Xiaoyan
    Xiao, Xian
    Zhang, Na
    Wang, Xiaoyue
    Sui, Yueyu
    Sun, Bo
    Liang, Yuting
    ISME JOURNAL, 2021, 15 (09): : 2561 - 2573
  • [9] Change in deep soil microbial communities due to long-term fertilization
    Li, Chenhua
    Yan, Kai
    Tang, Lisong
    Jia, Zhongjun
    Li, Yan
    SOIL BIOLOGY & BIOCHEMISTRY, 2014, 75 : 264 - 272
  • [10] THE EFFECT OF LONG-TERM FERTILIZATION ON THE CONTENT OF MINERAL NITROGEN IN SOIL
    PETR, J
    VANEK, V
    PROCHAZKA, J
    NAJMANOVA, J
    ROSTLINNA VYROBA, 1995, 41 (03): : 103 - 108