A computational approach for solving y2=1k+2k+•••+xk

被引:21
作者
Jacobson, MJ
Pintér, A
Walsh, PG
机构
[1] Univ Calgary, Dept Comp Sci, Calgary, AB T2N 1N4, Canada
[2] Univ Debrecen, Inst Math, H-4010 Debrecen, Hungary
[3] Univ Ottawa, Dept Math, Ottawa, ON K1N 6N5, Canada
关键词
diophantine equations; elliptic curves; quadratic fields;
D O I
10.1090/S0025-5718-03-01465-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a computational approach for finding all integral solutions of the equation y(2) = 1(k) + 2(k) + ... + x(k) for even values of k. By reducing this problem to that of finding integral solutions of a certain class of quartic equations closely related to the Pell equations, we are able to apply the powerful computational machinery related to quadratic number fields. Using our approach, we determine all integral solutions for 2 less than or equal to k less than or equal to 70 assuming the Generalized Riemann Hypothesis, and for 2 less than or equal to k less than or equal to 58 unconditionally.
引用
收藏
页码:2099 / 2110
页数:12
相关论文
共 24 条
[1]  
[Anonymous], THESIS TU DARMSTADT
[2]  
[Anonymous], 1998, E LUCAS PRIMALITY TE
[3]   The diophantine equation b2X4-dY2=1 [J].
Bennett, MA ;
Walsh, G .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 127 (12) :3481-3491
[4]   ON SOME GENERALIZATIONS OF THE DIOPHANTINE EQUATION [J].
BRINDZA, B .
ACTA ARITHMETICA, 1984, 44 (02) :99-107
[5]  
Brindza B, 2000, PUBL MATH-DEBRECEN, V56, P271
[6]  
BRINDZA B, 1990, C MATH SOC JANOS BOL, V51, P595
[7]  
BUCHMANN J, 1995, MATH APPL, V325, P159, DOI DOI 10.1007/978-94-017-11081_12
[8]  
Cohn JHE, 1997, ACTA ARITH, V78, P401
[9]  
DILCHER K, 1986, COMPOS MATH, V57, P383
[10]  
Dilcher K., 1988, MEM AMS, V73