Harvesting Opinions in Twitter for Sentiment Analysis

被引:0
|
作者
Guevara, Juan [1 ,3 ]
Costa, Joana [1 ,2 ]
Arroba, Jorge [3 ,4 ]
Silva, Catarina [1 ,2 ]
机构
[1] Polytech Inst Leiria, Sch Technol & Management, Leiria, Portugal
[2] Univ Coimbra, Ctr Informat & Syst, Coimbra, Portugal
[3] Univ Cent Ecuador, Quito, Ecuador
[4] Univ Alicante, Alicante, Spain
来源
2018 13TH IBERIAN CONFERENCE ON INFORMATION SYSTEMS AND TECHNOLOGIES (CISTI) | 2018年
关键词
Sentiment Analysis; Twitter; Lexicon;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Sentiment analysis is a very popular technique for social network analysis. One of the most popular social networks for microblogging that has a great growth is Twitter, which allows people to express their opinions using short, simple sentences. These texts are generated daily, and for this reason it is common for people to want to know which are the trending topics and their drifts. In this paper we propose to deploy a mobile app that provides information focusing on areas, such as, Politics, Social, Tourism, and Marketing using a statistical lexicon approach. The application shows the polarity of each theme as positive, negative, or neutral.
引用
收藏
页数:7
相关论文
共 50 条
  • [11] Ontology-based sentiment analysis of twitter posts
    Kontopoulos, Efstratios
    Berberidis, Christos
    Dergiades, Theologos
    Bassiliades, Nick
    EXPERT SYSTEMS WITH APPLICATIONS, 2013, 40 (10) : 4065 - 4074
  • [12] Twitter Sentiment Analysis
    Sarlan, Aliza
    Nadam, Chayanit
    Basri, Shuib
    PROCEEDINGS OF THE 2014 6TH INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY AND MULTIMEDIA (ICIM), 2014, : 212 - 216
  • [13] Contextual semantics for sentiment analysis of Twitter
    Saif, Hassan
    He, Yulan
    Fernandez, Miriam
    Alani, Harith
    INFORMATION PROCESSING & MANAGEMENT, 2016, 52 (01) : 5 - 19
  • [14] SENTIMENT ANALYSIS OF THE SYRIAN CONFLICT ON TWITTER
    Lucic, Danijela
    Katalinic, Josip
    Dokman, Tomislav
    MEDIJSKE STUDIJE-MEDIA STUDIES, 2020, 11 (22): : 46 - 61
  • [15] Sentiment Analysis of Turkish Twitter Data
    Shehu, Harisu Abdullahi
    Tokat, Sezai
    Sharif, Md. Haidar
    Uyaver, Sahin
    THIRD INTERNATIONAL CONFERENCE OF MATHEMATICAL SCIENCES (ICMS 2019), 2019, 2183
  • [16] Sentiment Analysis of Twitter in Tourism Destinations
    Perez Cabanero, Carmen
    Bigne, Enrique
    Ruiz, Carla
    Carlos Cuenca, Antonio
    3RD INTERNATIONAL CONFERENCE ON ADVANCED RESEARCH METHODS AND ANALYTICS (CARMA 2020), 2020, : 181 - 189
  • [17] Feature Expansion for Sentiment Analysis in Twitter
    Setiawan, Erwin B.
    Widyantoro, Dwi H.
    Surendro, Kridanto
    2018 5TH INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING, COMPUTER SCIENCE AND INFORMATICS (EECSI 2018), 2018, : 509 - 513
  • [18] Automatic Sentiment Analysis of Twitter Messages
    Lima, Ana C. E. S.
    de Castro, Leandro N.
    2012 FOURTH INTERNATIONAL CONFERENCE ON COMPUTATIONAL ASPECTS OF SOCIAL NETWORKS (CASON), 2012, : 52 - 57
  • [19] Twitter Sentiment Analysis Approaches: A Survey
    Adwan, Omar Y.
    Al-Tawil, Marwan
    Huneiti, Ammar M.
    Shahin, Rawan A.
    Abu Zayed, Abeer A.
    Al-Dibsi, Razan H.
    INTERNATIONAL JOURNAL OF EMERGING TECHNOLOGIES IN LEARNING, 2020, 15 (15) : 79 - 93
  • [20] Semantic Patterns for Sentiment Analysis of Twitter
    Saif, Hassan
    He, Yulan
    Fernandez, Miriam
    Alani, Harith
    SEMANTIC WEB - ISWC 2014, PT II, 2014, 8797 : 324 - 340