A Fast Conservative Scheme for the Space Fractional Nonlinear Schrodinger Equation with Wave Operator

被引:7
作者
Almushaira, Mustafa [1 ,2 ,3 ]
Liu, Fei [1 ,2 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Math & Stat, Wuhan 430074, Peoples R China
[2] Huazhong Univ Sci & Technol, Hubei Key Lab Engn Modeling & Sci Comp, Wuhan 430074, Peoples R China
[3] Sanaa Univ, Fac Sci, Dept Math, Sanaa, Yemen
关键词
Space-fractional nonlinear Schrodinger equations; fast difference solver; convergence; conservation laws; REACTION-DIFFUSION EQUATIONS; FINITE-ELEMENT-METHOD; NUMERICAL-METHODS; KLEIN-GORDON;
D O I
10.4208/jms.v54n4.21.06
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A new efficient compact difference scheme is proposed for solving a space fractional nonlinear Schrodinger equation with wave operator. The scheme is proved to conserve the total mass and total energy in a discrete sense. Using the energy method, the proposed scheme is proved to be unconditionally stable and its convergence order is shown to be of O(h(6) + tau(2)) in the discrete L-2 norm with mesh size h and the time step tau. Moreover, a fast difference solver is developed to speed up the numerical computation of the scheme. Numerical experiments are given to support the theoretical analysis and to verify the efficiency, accuracy, and discrete conservation laws.
引用
收藏
页码:407 / 426
页数:20
相关论文
共 32 条
[1]   Fourth-order time stepping methods with matrix transfer technique for space-fractional reaction-diffusion equations [J].
Alzahrani, S. S. ;
Khaliq, A. Q. M. ;
Biala, T. A. ;
Furati, K. M. .
APPLIED NUMERICAL MATHEMATICS, 2019, 146 :123-144
[2]   UNIFORM ERROR ESTIMATES OF FINITE DIFFERENCE METHODS FOR THE NONLINEAR SCHRODINGER EQUATION WITH WAVE OPERATOR [J].
Bao, Weizhu ;
Cai, Yongyong .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2012, 50 (02) :492-521
[3]   A SINGULAR PERTURBATION PROBLEM FOR AN ENVELOPE EQUATION IN PLASMA PHYSICS [J].
BERGE, L ;
COLIN, T .
PHYSICA D-NONLINEAR PHENOMENA, 1995, 84 (3-4) :437-459
[4]   An extension problem related to the fractional Laplacian [J].
Caffarelli, Luis ;
Silvestre, Luis .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2007, 32 (7-9) :1245-1260
[5]   A linearized energy-conservative finite element method for the nonlinear Schrodinger equation with wave operator [J].
Cai, Wentao ;
He, Dongdong ;
Pan, Kejia .
APPLIED NUMERICAL MATHEMATICS, 2019, 140 :183-198
[6]  
Cheng X., 2018, BIOMED RES INT, V2018, P1
[7]   Hitchhiker's guide to the fractional Sobolev spaces [J].
Di Nezza, Eleonora ;
Palatucci, Giampiero ;
Valdinoci, Enrico .
BULLETIN DES SCIENCES MATHEMATIQUES, 2012, 136 (05) :521-573
[8]   New numerical methods for the Riesz space fractional partial differential equations [J].
Ding, Heng-fei ;
Zhang, Yu-xin .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2012, 63 (07) :1135-1146
[9]   NUMERICAL-SIMULATION OF NONLINEAR SCHRODINGER SYSTEMS - A NEW CONSERVATIVE SCHEME [J].
FEI, Z ;
PEREZGARCIA, VM ;
VAZQUEZ, L .
APPLIED MATHEMATICS AND COMPUTATION, 1995, 71 (2-3) :165-177
[10]  
Guo B., 2012, ADV NUMER ANAL, V2012, DOI [10.1155/2012/913429, DOI 10.1155/2012/913429]