GENERALIZATION OF THE WEAK AMENABILITY ON VARIOUS BANACH ALGEBRAS

被引:3
作者
Gordji, Madjid Eshaghi [1 ,2 ]
Jabbari, Ali [3 ]
Bodaghi, Abasalt [4 ]
机构
[1] Semnan Univ, Dept Math, POB 35195-363, Semnan, Iran
[2] Semnan Univ, CENAA, Semnan, Iran
[3] Islamic Azad Univ, Ardabil Branch, Young Researchers & Elite Club, Ardebil, Iran
[4] Islamic Azad Univ, Garmsar Branch, Dept Math, Garmsar, Iran
来源
MATHEMATICA BOHEMICA | 2019年 / 144卷 / 01期
关键词
Banach algebra; (phi; psi)-derivation; group algebra; locally compact group; measure algebra; Segal algebra; weak amenability; NOTION;
D O I
10.21136/MB.2018.0046-17
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The generalized notion of weak amenability, namely (phi, psi)-weak amenability, where phi, psi are continuous homomorphisms on a Banach algebra A, was introduced by Bodaghi, Eshaghi Gordji and Medghalchi (2009). In this paper, the (phi, psi)-weak amenability on the measure algebra M(G), the group algebra L-1(G) and the Segal algebra S-1(G), where G is a locally compact group, are studied. As a typical example, the (phi, psi)-weak amenability of a special semigroup algebra is shown as well.
引用
收藏
页码:1 / 11
页数:11
相关论文
共 17 条
[1]  
BADE WG, 1987, P LOND MATH SOC, V55, P359
[2]   A GENERALIZATION OF THE WEAK AMENABILITY OF BANACH ALGEBRAS [J].
Bodaghi, A. ;
Gordji, M. Eshaghi ;
Medghalchi, A. R. .
BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2009, 3 (01) :131-142
[3]  
Bodaghi A, 2014, MATH BOHEM, V139, P99
[4]  
Bodaghi A, 2014, HACET J MATH STAT, V43, P85
[5]  
Bodaghi A, 2010, ARCH MATH-BRNO, V46, P227
[6]   Weak amenability of Segal algebras [J].
Dales, HG ;
Pandey, SS .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 128 (05) :1419-1425
[7]   The amenability of measure algebras [J].
Dales, HG ;
Ghahramani, R ;
Helemskii, AY .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2002, 66 :213-226
[8]   WEAK AMENABILITY OF GROUP-ALGEBRAS OF LOCALLY COMPACT-GROUPS [J].
DESPIC, M ;
GHAHRAMANI, F .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1994, 37 (02) :165-167
[9]   Weak amenability of certain classes of Banach algebras without bounded approximate identities [J].
Ghahramani, F ;
Lau, ATM .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2002, 133 :357-371
[10]   A CHARACTERIZATION OF WEAKLY AMENABLE BANACH-ALGEBRAS [J].
GROENBAEK, N .
STUDIA MATHEMATICA, 1989, 94 (02) :149-162