Nonparametric estimation of the likelihood ratio and divergence functionals
被引:14
|
作者:
Nguyen, XuanLong
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USAUniv Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA
Nguyen, XuanLong
[1
]
Wainwright, Martin J.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USAUniv Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA
Wainwright, Martin J.
[1
]
Jordan, Michael I.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USAUniv Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA
Jordan, Michael I.
[1
]
机构:
[1] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA
来源:
2007 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS, VOLS 1-7
|
2007年
关键词:
D O I:
10.1109/ISIT.2007.4557517
中图分类号:
TM [电工技术];
TN [电子技术、通信技术];
学科分类号:
0808 ;
0809 ;
摘要:
We develop and analyze a nonparametric method for estimating the class of f-divergence functionals, and the density ratio of two probability distributions. Our method is based on a non-asymptotic variational characterization of the f-divergence, which allows us to cast the problem of estimating divergences in terms of risk minimization. We thus obtain an M-estimator for divergences, based on a convex and differentiable optimization problem that can be solved efficiently We analyze the consistency and convergence rates for this M-estimator given conditions only on the ratio of densities.