Electrochemical Contact Separation for PVD Aluminum Back Contact Solar Cells

被引:3
|
作者
Kamp, Mathias [1 ]
Maywald, Axel [1 ]
Bartsch, Jonas [1 ]
Efinger, Raphael [1 ]
Keding, Roman [1 ]
Glatthaar, Markus [1 ]
Glunz, Stefan W. [1 ]
Krossing, Ingo [2 ]
机构
[1] Fraunhofer Inst Solar Energy Syst ISE, D-79110 Freiburg, Germany
[2] Univ Freiburg, D-79104 Freiburg, Germany
来源
PROCEEDINGS OF THE FIFTH WORKSHOP ON METALLIZATION FOR CRYSTALLINE SILICON SOLAR CELLS | 2015年 / 67卷
关键词
Aluminum; aluminum oxide; anodizing; contact separation; back contact solar cells;
D O I
10.1016/j.egypro.2015.03.289
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
This work deals with a possibility to simplify the processing of back-contact back-junction solar cells. A novel metallization process without using any additional mask is presented. The main focus is set on the contact separation resulting in the interdigitated metal pattern. In case of using evaporated aluminum as contacting material to silicon, aluminum anodizing is a convenient process to convert electrically conductive aluminum to electrically isolating aluminum oxide. In the established processes in which anodizing of aluminum is used for aluminum structuring, masks are used to achieve local anodized areas. In order to make the contact separation process by anodizing more economic, several in-situ anodizing processes either using structured processing units or printing techniques are developed and tested. (C) 2015 The Authors. Published by Elsevier Ltd.
引用
收藏
页码:70 / 75
页数:6
相关论文
共 50 条
  • [21] An optimized rapid aluminum back surface field technique for silicon solar cells
    Narasimha, S
    Rohatgi, A
    Weeber, AW
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 1999, 46 (07) : 1363 - 1370
  • [22] Corrosion of Aluminum in Contact with Oxidized Titanium and Zirconium
    Shtefan, V. V.
    Bairachnyi, B. I.
    Lisachuk, G. V.
    Smyrnova, O. Yu.
    Zuyok, V. A.
    Rud', R. O.
    Voronina, O. V.
    MATERIALS SCIENCE, 2016, 51 (05) : 711 - 718
  • [23] Barrier capacitance in the case of the polyacenequinone contact with aluminum
    Afanas'eva, RV
    Ermakova, TG
    Maksimov, AA
    Voronkov, MG
    DOKLADY PHYSICS, 2003, 48 (11) : 599 - 601
  • [24] Applications of Forcefill® aluminum for contact and via metallization
    Forster, J
    Robl, W
    Rausch, N
    Frank, M
    Butler, D
    Rich, P
    Marktanner, J
    MULTILEVEL INTERCONNECT TECHNOLOGY II, 1998, 3508 : 96 - 103
  • [25] Contact deposition of tin on compact and disperse aluminum
    Dresvyannikov, AF
    Ivshin, YV
    Grigor'eva, IO
    RUSSIAN JOURNAL OF ELECTROCHEMISTRY, 2001, 37 (07) : 765 - 769
  • [26] Barrier capacitance in the case of the polyacenequinone contact with aluminum
    R. V. Afanas’eva
    T. G. Ermakova
    A. A. Maksimov
    M. G. Voronkov
    Doklady Physics, 2003, 48 : 599 - 601
  • [27] Kinetics of contact deposition of iron on aluminum substrate
    Dresvyannikov A.F.
    Kolpakov M.E.
    Ivshin Ya.V.
    Lapina O.A.
    Protection of Metals, 2005, 41 (6): : 597 - 602
  • [28] Contact Deposition of Tin on Compact and Disperse Aluminum
    A. F. Dresvyannikov
    Ya. V. Ivshin
    I. O. Grigor'eva
    Russian Journal of Electrochemistry, 2001, 37 : 765 - 769
  • [29] Corrosion of Aluminum in Contact with Oxidized Titanium and Zirconium
    V. V. Shtefan
    B. I. Bairachnyi
    G. V. Lisachuk
    O. Yu. Smyrnova
    V. A. Zuyok
    R. O. Rud’
    O. V. Voronina
    Materials Science, 2016, 51 : 711 - 718
  • [30] Damage-free ultraviolet nanosecond laser ablation for high efficiency back contact solar cell fabrication
    Walter, Daniel
    Fell, Andreas
    Franklin, Evan
    Wang, Da
    Fong, Kean
    Kho, Teng
    Weber, Klaus
    Blakers, Andrew W.
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2015, 136 : 1 - 10