Simultaneous bio-functionalization and reduction of graphene oxide by baker's yeast

被引:235
作者
Khanra, Partha [1 ]
Kuila, Tapas [1 ]
Kim, Nam Hoon [2 ]
Bae, Seon Hyeong [1 ]
Yu, Dong-sheng [1 ]
Lee, Joong Hee [1 ,2 ,3 ]
机构
[1] Chonbuk Natl Univ, Dept BIN Fus Technol, WCU Program, Jeonju 561756, Jeonbuk, South Korea
[2] Chonbuk Natl Univ, Dept Hydrogen & Fuel Cell Engn, Jeonju 561756, Jeonbuk, South Korea
[3] Chonbuk Natl Univ, BIN Fus Res Ctr, Dept Polymer & Nano Engn, Jeonju 561756, Jeonbuk, South Korea
基金
新加坡国家研究基金会;
关键词
Bio-functionalization; Reduction; Graphene; Ultraviolet-visible spectroscopy; X-ray photoelectron spectroscopy; LIGHT-EMITTING-DIODES; FACILE SYNTHESIS; GREEN REDUCTION; ADSORPTION;
D O I
10.1016/j.cej.2011.12.075
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
An environmentally friendly, cost effective, and simple methodology for the preparation of surface modified graphene has been described in this paper. Baker's yeast containing nicotinamide adenine dinucleotide phosphate (NADPH) has been used as a reducing and functionalizing agent. The amine functional groups of NADPH can easily couple with the epoxy functionalities of graphene oxide (GO) and forms stable water dispersion of yeast-reduced graphene oxide (YR-GO). Ultraviolet-visible spectroscopy, Fourier transform infrared spectroscopy (FT-IR), and X-ray photoelectron spectroscopy (XPS) analysis confirm the successful reduction of GO to graphene. FT-IR and XPS analysis also indicate the doping of amine (-NH2) functionalities of NADPH molecules on the surface of graphene. The formation of defects further supports the bio-functionalization of graphene as indicated in the Raman spectrum of YR-GO. All these findings clearly indicate that GO can be reduced and functionalized by simple eco-friendly method by using Baker's yeast to produce water dispersible graphene. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:526 / 533
页数:8
相关论文
共 43 条
[21]   Ultrasonication-assisted ultrafast reduction of graphene oxide by zinc powder at room temperature [J].
Mei, Xiaoguang ;
Ouyang, Jianyong .
CARBON, 2011, 49 (15) :5389-5397
[22]   Spectroscopy of Covalently Functionalized Graphene [J].
Niyogi, Sandip ;
Bekyarova, Elena ;
Itkis, Mikhail E. ;
Zhang, Hang ;
Shepperd, Kristin ;
Hicks, Jeremy ;
Sprinkle, Michael ;
Berger, Claire ;
Lau, Chun Ning ;
deHeer, Walt A. ;
Conrad, Edward H. ;
Haddon, Robert C. .
NANO LETTERS, 2010, 10 (10) :4061-4066
[23]  
Otto M.C., 1994, J CHEM SOC T1, V1, P1517
[24]  
Park S, 2009, NAT NANOTECHNOL, V4, P217, DOI [10.1038/NNANO.2009.58, 10.1038/nnano.2009.58]
[25]   A Mechanism of Adsorption of β-Nicotinamide Adenine Dinucleotide on Graphene Sheets: Experiment and Theory [J].
Pumera, Martin ;
Scipioni, Roberto ;
Iwai, Hideo ;
Ohno, Takahisa ;
Miyahara, Yuji ;
Boero, Mauro .
CHEMISTRY-A EUROPEAN JOURNAL, 2009, 15 (41) :10851-10856
[26]   Are endophytic microorganisms involved in the stereoselective reduction of ketones by Daucus carota root? [J].
Rodriguez, Paula ;
Barton, Maria ;
Aldabalde, Virginia ;
Onetto, Silvia ;
Panizza, Paola ;
Menendez, Pilar ;
Gonzalez, David ;
Rodriguez, Sonia .
JOURNAL OF MOLECULAR CATALYSIS B-ENZYMATIC, 2007, 49 (1-4) :8-11
[27]   Reduction of Graphene Oxide via Bacterial Respiration [J].
Salas, Everett C. ;
Sun, Zhengzong ;
Luttge, Andreas ;
Tour, James M. .
ACS NANO, 2010, 4 (08) :4852-4856
[28]   Water-Soluble Graphene Covalently Functionalized by Biocompatible Poly-L-lysine [J].
Shan, Changsheng ;
Yang, Huafeng ;
Han, Dongxue ;
Zhang, Qixian ;
Ivaska, Ari ;
Niu, Li .
LANGMUIR, 2009, 25 (20) :12030-12033
[29]   Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide [J].
Stankovich, Sasha ;
Dikin, Dmitriy A. ;
Piner, Richard D. ;
Kohlhaas, Kevin A. ;
Kleinhammes, Alfred ;
Jia, Yuanyuan ;
Wu, Yue ;
Nguyen, SonBinh T. ;
Ruoff, Rodney S. .
CARBON, 2007, 45 (07) :1558-1565
[30]   Fabrication of Graphene-Polymer Nanocomposites With Higher-Order Three-Dimensional Architectures [J].
Vickery, Jemma L. ;
Patil, Avinash J. ;
Mann, Stephen .
ADVANCED MATERIALS, 2009, 21 (21) :2180-+