A note on special strong differential subordinations using multiplier transformation

被引:0
作者
Lupas, Alina Alb [1 ]
Oros, Georgia Irina [1 ]
Oros, Gheorghe [1 ]
机构
[1] Univ Oradea, Dept Math & Comp Sci, Oradea 410087, Romania
关键词
strong differential subordination; univalent function; convex function; best dominant; differential operator;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In the present paper we establish several strong differential subOrdinntions regardind the operator I (m, lambda, l), given by I (m, lambda, l) : A(n zeta)(*) -> A(n zeta)(*), I (m, lambda, l) f (z, zeta) := z + Sigma(infinity)(j=n+1) (1+lambda(j-1)+l/l+1)(m) a(j) (zeta) z(j), where m is an element of N boolean OR {0}, lambda, l >= 0 and A(n zeta)(*) = {f is an element of H(U x (U) over bar), f(z, zeta) = z + a(n+1) (zeta) z(n+1) + ..., z is an element of U, zeta is an element of (U) over bar} is the class of normalized analytic functions.
引用
收藏
页码:261 / 265
页数:5
相关论文
共 6 条
  • [1] Al-Oboudi FM., 2004, Int. J. Math. Sci, V27, P1429, DOI DOI 10.1155/S0161171204108090
  • [2] Lupas Alina Alb, 2009, B SCI MATH ROU UNPUB
  • [3] Miller S. S., 2000, MONOGRAPHS TXB PURE, V225
  • [4] MILLER SS, 1985, MICH MATH J, V32, P185
  • [5] Strong differential subordination
    Oros, Georgia Irina
    Oros, Gheorghe
    [J]. TURKISH JOURNAL OF MATHEMATICS, 2009, 33 (03) : 249 - 257
  • [6] STSALAGEAN G, 1983, LECT NOTES MATH, V1013, P362