Weighted Kernel joint sparse representation for hyperspectral image classification

被引:16
作者
Hu, Sixiu [1 ,2 ]
Xu, Chunhua [1 ,2 ]
Peng, Jiangtao [1 ,2 ,3 ]
Xu, Yan [3 ]
Tian, Long [3 ]
机构
[1] Hubei Univ, Fac Math & Stat, Wuhan 430062, Hubei, Peoples R China
[2] Hubei Univ, Hubei Key Lab Appl Math, Wuhan 430062, Hubei, Peoples R China
[3] Mississippi State Univ, Dept Elect & Comp Engn, Mississippi State, MS 39762 USA
基金
中国国家自然科学基金;
关键词
image representation; image classification; hyperspectral imaging; weighted kernel joint sparse representation coefficients; hyperspectral image classification; feature space; HSI classification; spatial neighbouring pixels; weighted K[!text type='JS']JS[!/text]R method; WK[!text type='JS']JS[!/text]R methods; second weighted scheme; nearest regularisation strategy; projected neighbouring pixels; SUPPORT VECTOR MACHINES;
D O I
10.1049/iet-ipr.2018.0124
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Kernel joint sparse representation (KJSR) performs joint sparse representation in the feature space and has shown good performance for the hyperspectral image (HSI) classification. In order to distinguish spatial neighbouring pixels in the feature space, we propose two weighted KJSR (WKJSR) methods in this paper. The first one computes the weight directly based on the kernel similarity between neighbouring pixels. The second weighted scheme uses a nearest regularisation strategy to simultaneously optimise the weights of projected neighbouring pixels and joint sparse representation coefficients. The proposed WKJSR methods can exploit the similarities and differences among neighbouring pixels to obtain accurate weights for the joint sparse representation and classification. Experimental results on two benchmark HSI data sets demonstrate the effectiveness of the proposed methods.
引用
收藏
页码:254 / 260
页数:7
相关论文
共 33 条
[1]   Composite kernels for hyperspectral image classification [J].
Camps-Valls, G ;
Gomez-Chova, L ;
Muñoz-Marí, J ;
Vila-Francés, J ;
Calpe-Maravilla, J .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2006, 3 (01) :93-97
[2]   Kernel-based methods for hyperspectral image classification [J].
Camps-Valls, G ;
Bruzzone, L .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2005, 43 (06) :1351-1362
[3]   Extreme Sparse Multinomial Logistic Regression: A Fast and Robust Framework for Hyperspectral Image Classification [J].
Cao, Faxian ;
Yang, Zhijing ;
Ren, Jinchang ;
Ling, Wing-Kuen ;
Zhao, Huimin ;
Marshall, Stephen .
REMOTE SENSING, 2017, 9 (12)
[4]   Nearest Regularized Joint Sparse Representation for Hyperspectral Image Classification [J].
Chen, Chen ;
Chen, Na ;
Peng, Jiangtao .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2016, 13 (03) :424-428
[5]   Hyperspectral Image Classification via Kernel Sparse Representation [J].
Chen, Yi ;
Nasrabadi, Nasser M. ;
Tran, Trac D. .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2013, 51 (01) :217-231
[6]   Hyperspectral Image Classification Using Dictionary-Based Sparse Representation [J].
Chen, Yi ;
Nasrabadi, Nasser M. ;
Tran, Trac D. .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2011, 49 (10) :3973-3985
[7]   Spectral-Spatial Classification of Hyperspectral Images With a Superpixel-Based Discriminative Sparse Model [J].
Fang, Leyuan ;
Li, Shutao ;
Kang, Xudong ;
Benediktsson, Jon Atli .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2015, 53 (08) :4186-4201
[8]   A spatial-spectral kernel-based approach for the classification of remote-sensing images [J].
Fauvel, M. ;
Chanussot, J. ;
Benediktsson, J. A. .
PATTERN RECOGNITION, 2012, 45 (01) :381-392
[9]   Thematic map comparison: Evaluating the statistical significance of differences in classification accuracy [J].
Foody, GM .
PHOTOGRAMMETRIC ENGINEERING AND REMOTE SENSING, 2004, 70 (05) :627-633
[10]   Hyperspectral Image Classification Via Shape-Adaptive Joint Sparse Representation [J].
Fu, Wei ;
Li, Shutao ;
Fang, Leyuan ;
Kang, Xudong ;
Benediktsson, Jon Atli .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2016, 9 (02) :556-567