List neighbor sum distinguishing edge coloring of subcubic graphs

被引:1
作者
Lu, You [1 ]
Li, Chong [1 ]
Luo, Rong [2 ]
Miao, Zhengke [3 ]
机构
[1] Northwestern Polytech Univ, Sch Sci, Dept Appl Math, Xian 710072, Shaanxi, Peoples R China
[2] West Virginia Univ, Dept Math, Morgantown, WV 26506 USA
[3] Jiangsu Normal Univ, Sch Math & Stat, Xuzhou 221116, Jiangsu, Peoples R China
关键词
List neighbor sum distinguishing edge coloring; Combinatorial Nullstellensatz; Subcubic graph; DISTINGUISHING INDEX; COMBINATORIAL NULLSTELLENSATZ;
D O I
10.1016/j.disc.2017.09.023
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A proper k-edge-coloring of a graph with colors in {1, 2, ... , k} is neighbor sum distinguishing (or, NSD for short) if for any two adjacent vertices, the sums of the colors of the edges incident with each of them are distinct. Flandrin et al. conjectured that every connected graph with at least 6 vertices has an NSD edge coloring with at most Delta+2 colors. Huo et al. proved that every subcubic graph without isolated edges has an NSD 6-edge coloring. In this paper, we first prove a structural result about subcubic graphs by applying the decomposition theorem of Trotignon and Vugkovit, and then applying this structural result and the Combinatorial Nullstellensatz, we extend the NSD 6-edge-coloring result to its list version and show that every subcubic graph without isolated edges has a list NSD 6-edge-coloring. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:555 / 569
页数:15
相关论文
共 21 条
[1]   Combinatorial Nullstellensatz [J].
Alon, N .
COMBINATORICS PROBABILITY & COMPUTING, 1999, 8 (1-2) :7-29
[2]   Weight Choosability of Graphs [J].
Bartnicki, Tomasz ;
Grytczuk, Jaroslaw ;
Niwczyk, Stanislaw .
JOURNAL OF GRAPH THEORY, 2009, 60 (03) :242-256
[3]  
Bonamy M., ARXIV14083190V1
[4]  
Bondy J.A., 2008, GTM, V244
[5]  
Dong AJ, 2014, DISCRETE APPL MATH, V166, P84, DOI 10.1016/j.dam.2013.10.009
[6]   Neighbor Sum Distinguishing Index [J].
Flandrin, Evelyne ;
Marczyk, Antoni ;
Przybylo, Jakub ;
Sacle, Jean-Francois ;
Wozniak, Mariusz .
GRAPHS AND COMBINATORICS, 2013, 29 (05) :1329-1336
[7]   Neighbor sum distinguishing index of 2-degenerate graphs [J].
Hu, Xiaolan ;
Chen, Yaojun ;
Luo, Rong ;
Miao, Zhengke .
JOURNAL OF COMBINATORIAL OPTIMIZATION, 2017, 34 (03) :798-809
[8]   Neighbor sum distinguishing edge colorings of sparse graphs [J].
Hu, Xiaolan ;
Chen, Yaojun ;
Luo, Rong ;
Miao, Zhengke .
DISCRETE APPLIED MATHEMATICS, 2015, 193 :119-125
[9]  
Huo J., 2016, J COMB OPTIM
[10]   Neighbor Sum Distinguishing Index of Subcubic Graphs [J].
Huo, Jingjing ;
Wang, Weifan ;
Xu, Chuandong .
GRAPHS AND COMBINATORICS, 2017, 33 (02) :419-431