Multiple solutions for a semiclassical Schrodinger equation

被引:11
作者
Zhang, Jian [1 ]
Zhao, Fukun [1 ]
机构
[1] Yunnan Normal Univ, Dept Math, Kunming 650092, Yunnan, Peoples R China
关键词
Nonlinear Schrodinger equation; Variational method; Strongly indefinite functionals; ELLIPTIC PROBLEMS; BOUND-STATES; EXISTENCE; NUMBER;
D O I
10.1016/j.na.2011.09.032
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with the semiclassical nonlinear Schrodinger equation {-epsilon(2)Delta u + V(x)u = f(x, u), x epsilon R-N u(x) -> 0 as vertical bar x vertical bar -> infinity. where epsilon > 0 is a small parameter. Under certain hypotheses on V and a general spectral assumption, the existence and multiplicity of semiclassical solutions are obtained for asymptotically linear nonlinearity via variational methods. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1834 / 1842
页数:9
相关论文
共 26 条
[21]  
Kryszewski A., 1998, Adv. Differ. Equ, V3, P441, DOI DOI 10.57262/ADE/1366399849
[22]   Compactness results for Schrodinger equations with asymptotically linear terms [J].
Liu, Zhaoli ;
Su, Jiabao ;
Weth, Tobias .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2006, 231 (02) :501-512
[23]  
OH VG, 1988, COMM PARTICAL DIFFER, V13, P1499
[24]  
OH VG, 1990, COMMUN MATH PHYS, V131, P223
[25]   SCHODINGER SEMIGROUPS [J].
SIMON, B .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1982, 7 (03) :447-526
[26]   Existence and multiplicity of semiclassical solutions for a Schrodinger equation [J].
Wang, Jun ;
Xu, Junxiang ;
Zhang, Fubao .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 357 (02) :403-415