Multiple solutions for a semiclassical Schrodinger equation

被引:11
作者
Zhang, Jian [1 ]
Zhao, Fukun [1 ]
机构
[1] Yunnan Normal Univ, Dept Math, Kunming 650092, Yunnan, Peoples R China
关键词
Nonlinear Schrodinger equation; Variational method; Strongly indefinite functionals; ELLIPTIC PROBLEMS; BOUND-STATES; EXISTENCE; NUMBER;
D O I
10.1016/j.na.2011.09.032
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with the semiclassical nonlinear Schrodinger equation {-epsilon(2)Delta u + V(x)u = f(x, u), x epsilon R-N u(x) -> 0 as vertical bar x vertical bar -> infinity. where epsilon > 0 is a small parameter. Under certain hypotheses on V and a general spectral assumption, the existence and multiplicity of semiclassical solutions are obtained for asymptotically linear nonlinearity via variational methods. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1834 / 1842
页数:9
相关论文
共 26 条
[1]   Singularly perturbed elliptic equations with symmetry: Existence of solutions concentrating on spheres, part I [J].
Ambrosetti, A ;
Malchiodi, A ;
Ni, WM .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2003, 235 (03) :427-466
[2]   Semiclassical states of nonlinear Schrodinger equations [J].
Ambrosetti, A ;
Badiale, M ;
Cingolani, S .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1997, 140 (03) :285-300
[3]  
[Anonymous], 1997, Adv. Diff. Equats
[4]   Nonlinear Schrodinger equations with steep potential well [J].
Bartsch, T ;
Pankov, A ;
Wang, ZQ .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2001, 3 (04) :549-569
[5]   EXISTENCE AND MULTIPLICITY RESULTS FOR SOME SUPERLINEAR ELLIPTIC PROBLEMS ON R(N) [J].
BARTSCH, T ;
WANG, ZQ .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1995, 20 (9-10) :1725-1741
[6]   Deformation theorems on non-metrizable vector spaces and applications to critical point theory [J].
Bartsch, Thomas ;
Ding, Yanheng .
MATHEMATISCHE NACHRICHTEN, 2006, 279 (12) :1267-1288
[7]   Solutions of nonlinear Dirac equations [J].
Bartsch, Thomas ;
Ding, Yanheng .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2006, 226 (01) :210-249
[8]   Semi-classical states of nonlinear Schrodinger equations: a variational reduction method [J].
del Pino, M ;
Felmer, P .
MATHEMATISCHE ANNALEN, 2002, 324 (01) :1-32
[9]   Multi-peak bound states for nonlinear Schrodinger equations [J].
Del Pino, M ;
Felmer, PL .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1998, 15 (02) :127-149
[10]   Concentration on curves for nonlinear Schrodinger equations [J].
Del Pino, Manuel ;
Kowalczyk, Michal ;
Wei, Jun-Cheng .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2007, 60 (01) :113-146