Reliable and Secure Multishot Network Coding using Linearized Reed-Solomon Codes

被引:0
|
作者
Martinez-Penas, Umberto [1 ,2 ]
Kschischang, Frank R. [1 ]
机构
[1] Univ Toronto, Dept Elect & Comp Engn, Toronto, ON, Canada
[2] Aalborg Univ, Dept Math Sci, Aalborg, Denmark
关键词
Linearized Reed-Solomon codes; multishot network coding; network error-correction; sum-rank metric; sum-subspace codes; wire-tap channel; ERROR-CORRECTION; CONVOLUTIONAL-CODES; SKEW;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Multishot network coding is considered in a worstcase adversarial setting in which an omniscient adversary with unbounded computational resources may inject erroneous packets in up to t links, erase up to. packets, and wire-tap up to mu links, all throughout l shots of a (random) linearly-coded network. Assuming no knowledge of the underlying linear network code (in particular, the network topology and underlying linear code may change with time), a coding scheme achieving zero-error communication and perfect secrecy is obtained based on linearized Reed-Solomon codes. The scheme achieves the maximum possible secret message size of ln' - 2t - rho - mu packets, where n' is the number of outgoing links at the source, for any packet length m >= n' (largest possible range), with only the restriction that l < q (size of the base field). By lifting this construction, coding schemes for non-coherent communication are obtained with information rates close to optimal for practical instances. AWelch-Berlekamp sum-rank decoding algorithm for linearized Reed-Solomon codes is provided, having quadratic complexity in the total length n = ln', and which can be adapted to handle not only errors, but also erasures, wire-tap observations and non-coherent communication.
引用
收藏
页码:702 / 709
页数:8
相关论文
共 50 条
  • [11] On Reed-Solomon codes
    Liao, Qunying
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2011, 32 (01) : 89 - 98
  • [12] On Reed-Solomon codes
    Qunying Liao
    Chinese Annals of Mathematics, Series B, 2011, 32 : 89 - 98
  • [13] Asymmetric quantum Reed-Solomon and generalized Reed-Solomon codes
    La Guardia, Giuliano G.
    QUANTUM INFORMATION PROCESSING, 2012, 11 (02) : 591 - 604
  • [14] Asymmetric quantum Reed-Solomon and generalized Reed-Solomon codes
    Giuliano G. La Guardia
    Quantum Information Processing, 2012, 11 : 591 - 604
  • [15] Linearized Reed-Solomon Codes With Support-Constrained Generator Matrix and Applications in Multi-Source Network Coding
    Liu, Hedongliang
    Wei, Hengjia
    Wachter-Zeh, Antonia
    Schwartz, Moshe
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2025, 71 (02) : 895 - 913
  • [16] Linearized Reed-Solomon Codes with Support-Constrained Generator Matrix
    Liu, Hedongliang
    Wei, Hengjia
    Wachter-Zeh, Antonia
    Schwartz, Moshe
    2023 IEEE INFORMATION THEORY WORKSHOP, ITW, 2023, : 7 - 12
  • [17] Cooperative Repair of Reed-Solomon Codes via Linearized Permutation Polynomials
    Xu, Jingke
    Zhang, Yaqian
    Wang, Ke
    Zhang, Zhifang
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2024, 70 (07) : 4747 - 4758
  • [18] GuardRider: Reliable WiFi Backscatter Using Reed-Solomon Codes With QoS Guarantee
    He, Xin
    Jiang, Weiwei
    Cheng, Meng
    Zhou, Xiaobo
    Yang, Panlong
    Kurkoski, Brian
    2020 IEEE/ACM 28TH INTERNATIONAL SYMPOSIUM ON QUALITY OF SERVICE (IWQOS), 2020,
  • [19] Repairing Reed-Solomon Codes
    Guruswami, Venkatesan
    Wootters, Mary
    STOC'16: PROCEEDINGS OF THE 48TH ANNUAL ACM SIGACT SYMPOSIUM ON THEORY OF COMPUTING, 2016, : 216 - 226
  • [20] CONVOLUTIONAL REED-SOLOMON CODES
    EBERT, PM
    TONG, SY
    BELL SYSTEM TECHNICAL JOURNAL, 1969, 48 (03): : 729 - +