Reliable and Secure Multishot Network Coding using Linearized Reed-Solomon Codes

被引:0
作者
Martinez-Penas, Umberto [1 ,2 ]
Kschischang, Frank R. [1 ]
机构
[1] Univ Toronto, Dept Elect & Comp Engn, Toronto, ON, Canada
[2] Aalborg Univ, Dept Math Sci, Aalborg, Denmark
来源
2018 56TH ANNUAL ALLERTON CONFERENCE ON COMMUNICATION, CONTROL, AND COMPUTING (ALLERTON) | 2018年
关键词
Linearized Reed-Solomon codes; multishot network coding; network error-correction; sum-rank metric; sum-subspace codes; wire-tap channel; ERROR-CORRECTION; CONVOLUTIONAL-CODES; SKEW;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Multishot network coding is considered in a worstcase adversarial setting in which an omniscient adversary with unbounded computational resources may inject erroneous packets in up to t links, erase up to. packets, and wire-tap up to mu links, all throughout l shots of a (random) linearly-coded network. Assuming no knowledge of the underlying linear network code (in particular, the network topology and underlying linear code may change with time), a coding scheme achieving zero-error communication and perfect secrecy is obtained based on linearized Reed-Solomon codes. The scheme achieves the maximum possible secret message size of ln' - 2t - rho - mu packets, where n' is the number of outgoing links at the source, for any packet length m >= n' (largest possible range), with only the restriction that l < q (size of the base field). By lifting this construction, coding schemes for non-coherent communication are obtained with information rates close to optimal for practical instances. AWelch-Berlekamp sum-rank decoding algorithm for linearized Reed-Solomon codes is provided, having quadratic complexity in the total length n = ln', and which can be adapted to handle not only errors, but also erasures, wire-tap observations and non-coherent communication.
引用
收藏
页码:702 / 709
页数:8
相关论文
共 47 条
  • [11] Gabidulin E. M., 1985, Problems of Information Transmission, V21, P1
  • [12] A random linear network coding approach to multicast
    Ho, Tracey
    Medard, Muriel
    Koetter, Ralf
    Karger, David R.
    Effros, Michelle
    Shi, Jun
    Leong, Ben
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (10) : 4413 - 4430
  • [13] Resilient network coding in the presence of Byzantine adversaries
    Jaggi, Sidharth
    Langberg, Michael
    Katti, Sachin
    Ho, Tracey
    Katabi, Dina
    Medard, Muriel
    Effros, Michelle
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2008, 54 (06) : 2596 - 2603
  • [14] Resilient network codes in the presence of eavesdropping Byzantine adversaries
    Jaggi, Sidharth
    Langberg, Michael
    [J]. 2007 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS, VOLS 1-7, 2007, : 541 - 545
  • [15] An algebraic approach to network coding
    Koetter, R
    Médard, M
    [J]. IEEE-ACM TRANSACTIONS ON NETWORKING, 2003, 11 (05) : 782 - 795
  • [16] Coding for errors and erasures in random network coding
    Koetter, Ralf
    Kschischang, Frank R.
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2008, 54 (08) : 3579 - 3591
  • [17] Kshevetskiy A, 2005, 2005 IEEE International Symposium on Information Theory (ISIT), Vols 1 and 2, P2105
  • [18] Lam T. Y., 1986, EXPOS MATH, V4, P193
  • [19] VANDERMONDE AND WRONSKIAN MATRICES OVER DIVISION RINGS
    LAM, TY
    LEROY, A
    [J]. JOURNAL OF ALGEBRA, 1988, 119 (02) : 308 - 336
  • [20] Linear network coding
    Li, SYR
    Yeung, RW
    Cai, N
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2003, 49 (02) : 371 - 381