Reliable and Secure Multishot Network Coding using Linearized Reed-Solomon Codes

被引:0
作者
Martinez-Penas, Umberto [1 ,2 ]
Kschischang, Frank R. [1 ]
机构
[1] Univ Toronto, Dept Elect & Comp Engn, Toronto, ON, Canada
[2] Aalborg Univ, Dept Math Sci, Aalborg, Denmark
来源
2018 56TH ANNUAL ALLERTON CONFERENCE ON COMMUNICATION, CONTROL, AND COMPUTING (ALLERTON) | 2018年
关键词
Linearized Reed-Solomon codes; multishot network coding; network error-correction; sum-rank metric; sum-subspace codes; wire-tap channel; ERROR-CORRECTION; CONVOLUTIONAL-CODES; SKEW;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Multishot network coding is considered in a worstcase adversarial setting in which an omniscient adversary with unbounded computational resources may inject erroneous packets in up to t links, erase up to. packets, and wire-tap up to mu links, all throughout l shots of a (random) linearly-coded network. Assuming no knowledge of the underlying linear network code (in particular, the network topology and underlying linear code may change with time), a coding scheme achieving zero-error communication and perfect secrecy is obtained based on linearized Reed-Solomon codes. The scheme achieves the maximum possible secret message size of ln' - 2t - rho - mu packets, where n' is the number of outgoing links at the source, for any packet length m >= n' (largest possible range), with only the restriction that l < q (size of the base field). By lifting this construction, coding schemes for non-coherent communication are obtained with information rates close to optimal for practical instances. AWelch-Berlekamp sum-rank decoding algorithm for linearized Reed-Solomon codes is provided, having quadratic complexity in the total length n = ln', and which can be adapted to handle not only errors, but also erasures, wire-tap observations and non-coherent communication.
引用
收藏
页码:702 / 709
页数:8
相关论文
共 47 条
  • [1] Network information flow
    Ahlswede, R
    Cai, N
    Li, SYR
    Yeung, RW
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2000, 46 (04) : 1204 - 1216
  • [2] Linear codes using skew polynomials with automorphisms and derivations
    Boucher, D.
    Ulmer, F.
    [J]. DESIGNS CODES AND CRYPTOGRAPHY, 2014, 70 (03) : 405 - 431
  • [3] Boucher D., 2018, ALGORITHM DECO UNPUB
  • [4] Cai N, 2002, PROCEEDINGS OF 2002 IEEE INFORMATION THEORY WORKSHOP, P119, DOI 10.1109/ITW.2002.1115432
  • [5] Secure network coding
    Cai, N
    Yeung, RW
    [J]. ISIT: 2002 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, PROCEEDINGS, 2002, : 323 - 323
  • [6] Cai N, 2006, COMMUN INF SYST, V6, P37
  • [7] Secure Network Coding on a Wiretap Network
    Cai, Ning
    Yeung, Raymond W.
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2011, 57 (01) : 424 - 435
  • [8] SUBFIELD SUBCODES OF MODIFIED REED-SOLOMON CODES
    DELSARTE, P
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 1975, 21 (05) : 575 - 576
  • [9] Secure Network Coding for Wiretap Networks of Type II
    El Rouayheb, Salim
    Soljanin, Emina
    Sprintson, Alex
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2012, 58 (03) : 1361 - 1371
  • [10] Feldman Jon., 2004, 42 ANN ALLERTON C CO, P63