Effect of polymer stereoregularity on polystyrene/single-walled carbon nanotube interactions

被引:5
作者
London, L. A. [1 ,2 ]
Bolton, L. A. [1 ,2 ]
Samarakoon, D. K. [1 ,2 ]
Sannigrahi, B. S. [1 ,2 ]
Wang, X. Q. [2 ,3 ]
Khana, I. M. [1 ,2 ]
机构
[1] Clark Atlanta Univ, Dept Chem, Atlanta, GA 30314 USA
[2] Clark Atlanta Univ, Ctr Funct Nanoscale Mat, Atlanta, GA 30314 USA
[3] Clark Atlanta Univ, Dept Phys, Atlanta, GA 30314 USA
基金
美国国家科学基金会;
关键词
ISOTACTIC POLYSTYRENE; GLUCOSE-OXIDASE; COMPOSITES; NANOCOMPOSITES; NANOPARTICLES; ELECTROLYTES; CONFORMATION; STABILITY; TACTICITY; BEHAVIOR;
D O I
10.1039/c5ra11445d
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We use a combination of computational and experimental studies to elucidate the effect of polymer stereoregularity on the capability of polystyrene interacting with single-walled carbon nanotube (SWNT) surfaces. Calculated binding energies on complexes of slightly oxidized SWNT with isotactic and atactic polystyrene favor the former, which suggests that the isotactic polymer interacts more effectively with the SWNT. The glass transition temperature (T-g) of the isotactic polystyrene/SWNT matrix increases from 90.9 to 100.5 degrees C as the SWNT content is increased to 0.5%, whereas the glass transition temperature of the atactic polystyrene/SWNT matrix is invariant with increasing SWNT content. Rotating frame C-13 T-1p relaxation rates for the isotactic polymer/SWNT matrix increases from 2.15 to 2.43 ms as the SWNT content is increased from 0.25 to 1.0%. However, the rotating frame C-13 T-1p relaxation rates for the atactic polymer/SWNT matrix decreases from 2.50 to 1.60 ms as SWNT content is increased from 0.25 to 1.0%. Our results demonstrate that the SWNTs are better dispersed within the isotactic polystyrene and the better dispersion is associated with a more effective interaction of the isotactic polymer with the SWNT surface.
引用
收藏
页码:59186 / 59193
页数:8
相关论文
共 53 条
  • [1] Cure behavior of epoxy/MWCNT nanocomposites: The effect of nanotube surface modification
    Abdalla, Mohamed
    Dean, Derrick
    Robinson, Pamela
    Nyairo, Elijah
    [J]. POLYMER, 2008, 49 (15) : 3310 - 3317
  • [2] Destruction and formation of a conductive carbon nanotube network in polymer melts:: In-line experiments
    Alig, Ingo
    Lellinger, Dirk
    Engel, Martin
    Skipa, Tetyana
    Poetschke, Petra
    [J]. POLYMER, 2008, 49 (07) : 1902 - 1909
  • [3] Carbon nanotube polymer composites
    Andrews, R
    Weisenberger, MC
    [J]. CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE, 2004, 8 (01) : 31 - 37
  • [4] EXTENDED-CHAIN STRUCTURE FOR ISOTACTIC POLYSTYRENE - ADDITIONAL X-RAY-DIFFRACTION AND CALORIMETRIC RESULTS
    ATKINS, EDT
    KELLER, A
    SHAPIRO, JS
    LEMSTRA, PJ
    [J]. POLYMER, 1981, 22 (09) : 1161 - 1164
  • [5] A review and analysis of electrical percolation in carbon nanotube polymer composites
    Bauhofer, Wolfgang
    Kovacs, Josef Z.
    [J]. COMPOSITES SCIENCE AND TECHNOLOGY, 2009, 69 (10) : 1486 - 1498
  • [6] Bell J.M., 2008, MATER FORUM, V32, P144
  • [7] Thermophysical and Phase Properties of Polymer/Liquid Crystal Systems: Theoretical Aspects and Experimental Examples
    Benmouna, Reda
    Benmouna, Mustapha
    [J]. JOURNAL OF CHEMICAL AND ENGINEERING DATA, 2010, 55 (05) : 1759 - 1767
  • [8] Carbon nanotube composites for thermal management
    Biercuk, MJ
    Llaguno, MC
    Radosavljevic, M
    Hyun, JK
    Johnson, AT
    Fischer, JE
    [J]. APPLIED PHYSICS LETTERS, 2002, 80 (15) : 2767 - 2769
  • [9] Microstructure and Properties of Polypropylene/Carbon Nanotube Nanocomposites
    Bikiaris, Dimitrios
    [J]. MATERIALS, 2010, 3 (04) : 2884 - 2946
  • [10] Bovey FA, 1996, NMR OF POLYM